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THEOREM 1. Let Dx, D2^Cn be strictly pseudoconvex domains with 
smooth boundaries and suppose that F\D1-^D2 is biholomorphic (i.e., F 
is an analytic homeomorphism). Then F extends to a diffeomorphism of 
the closures, F: D1->D2. 

The main idea in proving Theorem 1 is to study the boundary behavior 
of geodesies in the Bergman metrics (see [2]) of Z>i and D2. To do so, 
we use a rather explicit formula for the Bergman kernels of Dx and D2. 
We begin with a few definitions. Let D={z e Cn |^(z)>0} be a strictly 
pseudoconvex domain, where ip e C^iC") satisfies grad ^ ^ O o n dD. 

(1) Let JSf (co) denote the Levi form, i.e. the quadratic form 

jSf (co) dzdz = ^ V Y 

i.k dzi otic 

dZj dzk 

restricted to the subspace {dz e Cn\2ô (d\pfdz^)\w dzj=0} of Cn. 
(2) For coi, œ2 e D, set p(a)x, co2) = |co1—co2|

2+|(co2—co^ • (dipldco)\œi\. 
(See [2] again.) 

(3) A smooth function y defined on D X D has weight k (where k^.0 is 
an integer or half-integer) if the following estimate holds. 

l9>(«>i, (o2)\ ^ C(y>(tt>i) + f(co2) + P(co1, co2))
k 

(4) Set 

dtp 
X(z, œ) = y>(œ) + 2 a 

2 4*dœ4dœh 

(zi - co,.) 

(Zj - (Oi)(zk - Û>*). 
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Elementary calculations show that X(z, co) has weight 1, and that 
\X(z, co)\^.c(y)(z)+y)(co)+p(z, co)) in a region of the form Rô= 
{(z, CO)E DxD\y)(z)+y)(co)+\z-co\<ô}. 

THEOREM 2. The Bergman kernel K(z, co) for D has an asymptotic 
expansion 

K(z, co) ~ c |grad xp{co)\2 det &(co)X-{n+1)(z, co) 
\P) oo 

+ 2 VA2* œ)x~mj(z> Ö>) + $(z, co)log X(z, co), 

where c is a constant, cpó and <p are smooth functions, "log" denotes the 
principal branch of the logarithm on {Re(£)>0}, weight ((p^—m^—n—^, 
and weight (cpj)—mj-+co asy->oo. The expansion (5) is valid in a region 
Rô, and the symbol " ~ " means that for any integer k, 

K(z, co)-c |grad tp(co)\2 det^(co)X~{n+1)(z, co) 

- 2 <^(z> ^)X~mKz, co) - cp(z, co)log X(z, m) G C\RÔ) 

for N large enough. 

COROLLARY. K(Z, z)=®(z)tp-in+1)(z)+<b(z)logy(z), where O, $ e 
C°°(5) and <Sy*0 near dD. 

Although O vanishes on the unit ball, it can be nonzero, even on very 
smooth (say, real-analytic) domains. 

The proof of Theorem 2 is based on an elementary fact. 

LEMMA 1. Given p e 3D, we can find a region D internally tangent to 
D to third order at p, and an explicit biholomorphic change of co-ordinates 
F mapping a neighborhood of p in D to a neighborhood of F(p) in the unit 
ball. 

Once Lemma 1 is established, we can use F to pull the Bergman kernel 
from the unit ball back to D\ and since D so closely approximates D 
near/?, we may hope that the (known) Bergman kernel for D provides a 
close approximation to the (unknown) Bergman kernel for D. Having 
thus obtained a candidate for an approximate Bergman kernel, we use a 
successive approximation procedure to prove (5). 

Now we can attack Theorem 1 by using the corollary to Theorem 2 
to make explicit differential-geometric calculations with the Bergman 
metric. We need two more definitions. 

(6) For a fixed point z° e D and a unit vector coeS211-1^^, let 
t-+y(t, co, z°) be the path of a particle moving with unit speed (in the 
Bergman metric) along the geodesic in D starting at t=0 at the point 
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z° and travelling in the direction co. We say that (z°, co0) e D x 5 2 n _ 1 

is pseudotransversal if the map co->7r;5o(co)=limt_^00 y(t,œ,z°) is well de­
fined for co close to co° in 52 w _ 1 and provides a diffeomorphism of a small 
open neighborhood of co0 e 5 2 n _ 1 onto a small open neighborhood of 
7rzo(co) G 3Z). 

(7) Let t-+y(t) be a geodesic in D, and define coy(7)=the unit vector in 
the direction dy(t)/dt. If (y(t),a)y(t)) e DxS2^1 is pseudotransversal 
for all t larger than some fixed T, then we call y a pseudotransversal 
geodesic. 

LEMMA 2. (a) Every geodesic y(t) not remaining in a fixed compact 
subset of D for all t^.0 is pseudotransversal. 

(b) Every point p E dD is 7Tzo(a>°)for a certain (z°, œ°) e Dx5 2 w _ 1 . 

Theorem 1 is a simple consequence of Lemma 2 and a result of Vormoor 
[1] which states that under the hypotheses of Theorem 1, F extends to 
a continuous mapping F: Dx-+D%. For, given px e dDl9 we use Lemma 
2(b) to find a geodesic yx(t) in Dx with l im^^ yx(t)=pv Since F is an 
isometry of Bergman metrics, the path 72(0==^7(7i(0) *s a geodesic in 
D2, and by Lemma 2(a), both yx and y2 are pseudotransversal. Set 
/?2=lim<_>00 y2(/), and pick T so large that (zl9 coà=(Yi(T), con(T)) and 
(z2, co2)=(72(^)5 Wy (2")) are both pseudotransversal. Since the differential 
of F induces a diffeomorphism (dF)~ between the unit tangent vectors 
based at zx and those based at z2, we have a commutative diagram 

(dF)~ £2w-l y £2n-l 

dDx • dD2 

where the maps TTZI and 7rZ2 are defined in small neighborhoods of 
co1=7r7i

1(/71) and co2=77-7*(/?2). All the maps in the diagram, except F, 
are already known to be diffeomorphisms. Hence F must also be a diffeo­
morphism from a neighborhood of px to a neighborhood of p2, which 
proves Theorem 1. 
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