Skip to main content
Log in

Superior high-temperature resistance of aluminium nitride particle-reinforced aluminium compared to silicon carbide or alumina particle-reinforced aluminium

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aluminium-matrix composites containing AlN, SiC or Al2O3 particles were fabricated by vacuum infiltration of liquid aluminium into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AlN had similar tensile strengths and higher ductility compared to Al/SiC of similar reinforcement volume fractions at room temperature, but exhibited higher tensile strength arid higher ductility at 300–400 °C and at room temperature after heating at 600 °C for 10–20 days. The ductility of Al/AIN increased with increasing temperature from 22–400 °C, while that of Al/SiC did not change with temperature. At 400 °C, Al/AlN exhibited mainly ductile fracture, whereas Al/SiC exhibited brittle fracture due to particle decohesion. Moreover, Al/AlN exhibited greater resistance to compressive deformation at 525 °C than Al/SiC. The superior high-temperature resistance of Al/AlN is attributed to the lack of a reaction between aluminium and AlN, in contrast to the reaction between aluminium and SiC in Al/SiC. By using Al-20Si-5Mg rather than aluminium as the matrix, the reaction between aluminium and SiC was arrested, resulting in no change in the tensile properties after heating at 500 °C for 20 days. However, the use of Al-20Si-5Mg instead of aluminium as the matrix caused the strength and ductility to decrease by 30% and 70%, respectively, due to the brittleness of Al-20Si-5Mg. Therefore, the use of AIN instead of SiC as the reinforcement is a better way to avoid the filler-matrix reaction. Al/Al2O3 had lower room-temperature tensile strength and ductility compared to both Al/AlN and Al/SiC of similar reinforcement volume fractions, both before and after heating at 600 °C for 10–20 days. Al/Al2O3 exhibited brittle fracture even at room temperature, due to incomplete infiltration resulting from Al2O3 particle clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alan L. Geiger and Michael Jackson, Adv. Mater. Proc. 136(1) (1989) 23.

    Google Scholar 

  2. Alan L. Geiger, private communications.

  3. M. K. Aghajanian, J. T. Burke, D. R. White and A. S. Nagelburg, SAMPE Q. 20 (4) (1989) 43.

    CAS  Google Scholar 

  4. C. Toy and W. D. Scott, J. Am. Ceram. Soc. 73(1) (1990) 97.

    Article  CAS  Google Scholar 

  5. A. Sakomoto, H. Hasegawa and Y. Minoda, in “Proceedings ICCM/5”, edited by W. C. Harrigan Jnr., J. Strife and A. K. Dhingra (Metallurgical Society of AIME, New York, 1985) pp. 705–7.

    Google Scholar 

  6. D. L. McDanels and C. A. Hoffman, NASA technical paper 2302 (1984).

  7. W. L. Phillips, in “Proceedings ICCM/2”, edited by B. R. Noton (Metallurgical Society of AIME, Warrendale, PA, 1978) pp. 567–76.

    Google Scholar 

  8. C. S. Lin, SAE Technical Paper Series 902013, Aerospace Technology Conference and Exposition, Long Beach, CA, 1–4 October 1990 (SAE, Warrendale, PA, 1990).

    Google Scholar 

  9. R. D. Schueller and F. E. Wawner, Compos. Sci. Technol. 40 (1991) 213.

    Article  CAS  Google Scholar 

  10. S. F. Corbin and D. S. Wilkinson, in “Proceedings of Ceramic and Metal Matrix Composites”, Proceedings of the International Symposium on Advanced Processing of Ceramic and Metal Matrix Composites, edited by H. Mostachaci (1989).

  11. Advanced Composite Materials Corp., data sheet.

  12. A. Sakomoto, H. Hasegawa and Y. Minoda, in “Proceedings ICCM/5”, edited by W. C. Harrigan Jnr., J. Strife and A. K. Dhingra (Metallurgical Society of AIME, New York, 1985) pp. 699–705.

    Google Scholar 

  13. W. Pollock and F. E. Wawner, in “12th Conference on Composite Materials and Structures”, Cocoa Beach, FL, 20–22 January, 1988.

  14. L. Ackermann, J. Charbonnier, G. Desplanches and H. Koslowski, in “Proceedings ICCM/5”, edited by W. C. Harrigan, J. Strife and A. K. Dhingra (Metallurgical Society of AIME, New York, 1985) pp. 687–98.

    Google Scholar 

  15. J. Dinwoodie, E. Moore, C. Langman and W. Symes, ibid.“, pp. 671–85.

    Google Scholar 

  16. A. Banerji and P. K. Rohatgi, J. Mater. Sci. 17 (1982) 335.

    Article  CAS  Google Scholar 

  17. J. A. Cornie, A. Mortensen and M.C. Flemings, in “Proceedings ICCM/6”, edited by F. L. Matthews, N. C. R. Buskell, J. M. Hodginson and J. Morton, Elsevier, Vol. 2 (1987) pp. 2297–319.

  18. Jeng-Maw Chiou and D. D. L. Chung, J. Mater. Sci. 28 (1993) 1435.

    Article  CAS  Google Scholar 

  19. Idem, ibid. 28 (1993) 1447.

    Article  CAS  Google Scholar 

  20. Idem, ibid. 28 (1993) 1471.

    Article  CAS  Google Scholar 

  21. S.-Y. Oh, J. A. Cornie and K. C. Russell, Met. Trans. 20A (1989) 527.

    Article  CAS  Google Scholar 

  22. Z. Hashin and Shtrikman, J. Mech. Phys. Solids 11 (1963) 127.

    Article  Google Scholar 

  23. Shy-Wen Lai and D. D. L. Chung, J. Mater. Sci., 29 (1994) 2998.

    Article  CAS  Google Scholar 

  24. E. H. Kerner, Proc. Phys. Soc. 69 (1963) 802.

    Article  Google Scholar 

  25. P. S. Turner, J. Res. NBS 37 (1946) 239.

    CAS  Google Scholar 

  26. M. G. Nicholas, D. A. Mortimer, L. M. Jones and R. M. Crispin, J. Mater. Sci. 25 (1990) 2679.

    Article  CAS  Google Scholar 

  27. J. E. Hatch (ed.), “Aluminium: Properties and Physical Metallurgy” (ASM, Metals Park, OH, 1984).

    Google Scholar 

  28. D. J. Lloyd, H. Lagace, A. McLeod and P. L. Morris, Mater. Sci. Eng. A107 (1989) 73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, S.W., Chung, D.D.L. Superior high-temperature resistance of aluminium nitride particle-reinforced aluminium compared to silicon carbide or alumina particle-reinforced aluminium. JOURNAL OF MATERIALS SCIENCE 29, 6181–6198 (1994). https://doi.org/10.1007/BF00354559

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354559

Keywords

Navigation