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Preface

The increasing demand on ultra miniturized electronic devices for ever im-
proving performances has led to the necessity of a deep and detailed under-
standing of the mathematical theory of charge transport in semiconductors.
Because of their very short dimensions of charge transport, these devices must
be described in terms of the semiclassical Boltzmann equation coupled with
the Poisson equation (or some phenomenological consequences of these equa-
tions) because the standard approach, which is based on the celebrated drift-
diffusion equations, leads to very inaccurate results whenever the dimensions
of the devices approach the carrier mean free path.
In some cases, such as for very abrupt heterojunctions in which tunneling
occurs it is even necessary to resort to quantum transport models (e.g. the
Wigner-Boltzmann-Poisson system or equivalent descriptions).
These sophisticated physical models require an appropriate mathematical
framework for a proper understanding of their mathematical structure as well
as for the correct choice of the numerical algorithms employed for computa-
tional simulations.
The resulting mathematical problems have a broad spectrum of theoretical
and practical conceptually interesting aspects.
From the theoretical point of view, it is of paramount interest to investigate
wellposedness problems for the semiclassical Boltzmann equation (and also for
the quantum transport equation, although this is a much more difficult case).
Another problem of fundamental interest is that of the hydrodynamical limit
which one expects to be quite different from the Navier-Stokes-Fourier one,
since the collision operator is substantially different from the one in rarefied
gas case.
From the application viewpoint it is of great practical importance to study
efficient numerical algorithms for the numerical solution of the semiclassical
Boltzmann transport equation (e.g spherical harmonics expansions, Monte
Carlo method, method of moments, etc.) because such investigations could
have a great impact on the performance of industrial simulation codes for



VI Preface

TCAD (Technology Computer Aided Design) in the microelectronics indus-
try.

The CIME summer course entitled MATHEMATICAL PROBLEMS
IN SEMICONDUCTOR PHYSICS dealt with this and related ques-
tions. It was addressed to researchers (either PhD students, young post-docs
or mature researchers from other areas of applied mathematics) with a strong
interest in a deep involvement in the mathematical aspects of the theory of
carrier transport in semiconductor devices.
The course took place in the period 15-22 July 1998 on the premises of the
Grand Hotel San Michele di Cetraro (Cosenza), located at a beach of astound-
ing beauty in the Magna Graecia part of southern Italy. The Hotel facilities
were more than adequate for an optimal functioning of the course. About 50
“students”, mainly from various parts of Europe, participated in the course.
At the end of the course, in the period 23-24 July 1998, a related workshop of
the European Union TMR (Training and Mobility of Researchers) on “Asymp-
totic Methods in Kinetic Theory” was held in the same place and several of
the participants stayed for both meetings. Furthermore the CIME course was
considered by the TMR as one of the regular training schools for the young
researchers belonging to the network.
The course developed as follows:

• W. Allegretto delivered 6 lectures on analytical and numerical problems
for the drift-diffusion equations and also on some recent results concerning
the electrothermal model. In particular he highlighted the relationship
with integrated sensor modeling and the relevant industrial applications,
inducing a considerable interest in the audience.

• F. Poupaud delivered 6 lectures on the rigorous derivation of the quan-
tum transport equation in semiconductors, utilizing recent developments
on Wigner measures introduced by Gérard, in order to obtain the semi-
classical limit. His lectures, in the French style of pure mathematics, were
very clear, comprehensive and of advanced formal rigour.The lectures were
particularly helpful to the young researchers with a strong background in
Analysis because they highlighted the analytical problems arising from the
rigorous treatment of the semiclassical limit.

• C. Ringhofer delivered 6 lectures which consisted of an overview of the
state of the art on the models and methods developed in order to study
the semiclassical Boltzmann equation for simulating semiconductor de-
vices. He started his lectures by recalling the fundamentals of semicon-
ductor physics then introduced the methods of asymptotic analysis in or-
der to obtain a hierarchy of models, including: drift-diffusion equations,
energy transport equations, hydrodynamical models (both classical and
quantum), spherical harmonics and other kinds of expansions. His lec-
tures provided comprehensive review of the modeling aspects of carrier
transport in semiconductors.
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d) D. Levermore delivered 6 lectures on the mathematical foundations and
applications of the moment methods. He presented in detail and depth the
concepts of exponential closures and of the principle of maximum entropy.
In his lectures he gave several physical examples of great interest arising
from rarefied gas dynamics, and pointed out how the method could also
be applied to the semiclassical Boltzmann equation. He highlighted the re-
lationships between the method of moments and the mathematical theory
of hyperbolic systems of conservation laws.

During the course several seminars on specialized topics were given by lead-
ing specialists. Of particular interest were these of P. Markowich (co-director
of the course) on the asymptotic limit for strong fieds, of P. Pietra on the
numerical solution of the quantum hydrodynamical model, of A. Jungel on
the entropy formulation of the energy transport model, of O. Muscato on the
Monte Carlo validation of hydrodynamical models, of C. Schmeiser on ex-
tended moment methods, of A. Arnold on the Wigner-Poisson system, and of
A. Marrocco on the mixed finite element discretization of the energy transport
model.

A. M. Anile

CIME’s activity is supported by:

Ministero dell’Università Ricerca Scientifica e Tecnologica;
Consiglio Nazionale delle Ricerche; E.U. under the Training and Mobility of
Researchers Programme.
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