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Foreword

It is hardly a profound observation to note that we remain in the midst of
a wireless revolution. In 1998 alone, over 150 million cell phones were sold
worldwide, representing an astonishing 50% increase over the previous year.
Maintaining such a remarkable growth rate requires constant innovation to
decrease cost while increasing performance and functionality.

Traditionally, wireless products have depended on a mixture of semiconduc-
tor technologies, spanning GaAs, bipolar and BiCMOS, just to name a few. A
question that has been hotly debated is whether CMOS could ever be suitable
for RF applications. However, given the acknowledged inferiority of CMOS
transistors relative to those in other candidate technologies, it has been argued
by many that “CMOS RF” is an oxymoron, an endeavor best left cloistered in
the ivory towers of academia.

In rebuttal, there are several compelling reasons to consider CMOS for wire-
less applications. Aside from the exponential device and density improvements
delivered regularly by Moore’s law, only CMOS offers a technology path for
integrating RF and digital elements, potentially leading to exceptionally com-
pact and low-cost devices. To enable this achievement, several thorny issues
need to be resolved. Among these are the problem of poor passive compo-
nents, broadband noise in MOSFETs, and phase noise in oscillators made with
CMOS. Beyond the component level, there is also the important question of
whether there are different architectural choices that one would make if CMOS
were used, given the different constraints.

The work described in this book, based on Dr. Shaeffer’s doctoral research
at Stanford, is a significant first step toward answering many of these questions.
This single-chip GPS receiver actually outperforms existing implementations in
other technologies, while consuming less power. Furthermore, it is more highly
integrated. As is made apparent in the chapters to come, this performance is
made possible by a careful choice of architecture, and a detailed study of how to
approach performance limits consistently. Important advances in understanding
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how to design low-noise amplifiers (LNAs) and wide dynamic range filters in
CMOS form the core contributions of this work. Just as important are the
scaling properties elucidated by this research, for it makes it clear that both
RF and digital performance will improve together, assuring that CMOS will
become an important medium in which to realize RF circuits and systems.

Thomas H. Lee
Stanford University
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Introduction
Derek K. Shaeffer

Wireless communications research has experienced a remarkable renais-
sance in the last decade. The advent of cellular telephony has driven much
of the recent research activity, but substantial efforts have also focused on
other wireless applications, such as cordless telephones and, more recently, the
Global Positioning System.

The primary goal of this book is to explore techniques for implementing wire-
less receivers in an inexpensive complementary metal-oxide-semiconductor
(CMOS) technology. Although the techniques developed apply somewhat
generally across many classes of receivers, the specific focus of this work is
on the Global Positioning System (GPS). Because GPS provides a convenient
vehicle for examining CMOS receivers, a brief overview of the GPS system
and its implications for consumer electronics is in order.

The GPS system comprises 24 satellites in low earth orbit that continuously
broadcast their position and local time [4]. Through satellite range measure-
ments, a receiver can determine its absolute position and time to within about
100m anywhere on Earth, as long as four satellites are within view. The deploy-
ment of this satellite network was completed in 1994 and, as a result, consumer
markets for GPS navigation capabilities are beginning to blossom. Examples
include automotive or maritime navigation, intelligent hand-off algorithms in
cellular telephony, and cellular emergency (911) services, to name a few.

Of particular interest in the context of this book are embedded GPS ap-
plications where a GPS receiver is just one component of a larger system.
Widespread proliferation of embedded GPS capability will require receivers
that are compact, cheap and low-power. For such goals, the benefits conveyed
by integration are self-evident: minimization of the number of off-chip com-
ponents (particularly the number of expensive passive filters), improved form
factor, reduced cost and ease of design.
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For further cost reduction, it is interesting to consider implementation in a
CMOS technology. Due to the huge capital investment in CMOS, it is only
natural to consider whether the technology’s shortcomings can be mitigated,
making it attractive in an arena that historically has been dominated by more
expensive silicon bipolar and GaAs MESFET technologies.

Meeting the goal of receiver integration in an inferior technology requires
innovation in architectures, circuits and device modeling. Collectively, the
scope of these problems is broad, but a successful approach will bring clear
benefits for consumer electronics. And so, these considerations motivate the
present research into highly integrated CMOS GPS receivers that forms the
subject of this book.

The following chapters delve into the problems of radio receiver design in
detail. The ultimate goal is the design and implementation of a 115mW CMOS
GPS receiver in a CMOS process. The techniques developed along the
way are, however, broadly applicable to other wireless systems.

Chapter 1 begins with an overview of radio receiver architectures by pre-
senting fundamental concepts through the vehicle of historical examples. Then
in Chapter 2, the subjects of noise, distortion and frequency planning are pre-
sented, with special attention paid to cascaded systems. In addition, a review
of the current state of the art in CMOS receiver research establishes a context
for the present work. In Chapter 3, the relevant technical details of the GPS
system are presented along with a brief survey of common GPS receiver archi-
tectures. Then, applying the concepts developed in Chapter 1, we introduce a
new architecture that takes advantage of details of the GPS signal spectrum to
achieve a high level of integration.

Chapter 4 tackles the subject of CMOS low-noise amplifiers in great de-
tail. This includes a survey of recent work and the development of a power-
constrained noise figure optimization procedure for gaining the best perfor-
mance for a stated power budget. Proceeding down the receiver chain, Chapter
5 discusses frequency mixers and focuses attention on the double-balanced
CMOS voltage mixer that provides high linearity, low noise figure and ex-
tremely low power consumption. Chapter 6 follows with an investigation of
active filters. Because the active filter is a dynamic range bottleneck in many
receivers, this chapter focuses on how to design filter transconductor elements
that maximize dynamic range with a given power consumption. In particular,
we develop a figure of merit that permits a comparison of various transconduc-
tors, leading ultimately to a very power-efficient filter implementation.

To put these theoretical developments into practice, Chapter 7 presents the
implementation of an experimental CMOS GPS receiver in a  process.
The experimental results demonstrate a high level of performance and inte-
gration that is comparable to or better than existing implementations in more
expensive technologies, thereby confirming the value of the techniques pre-
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sented in earlier chapters. Finally, Chapter 8 concludes with a summary and
some suggestions for future work.

For readers who survive the first eight chapters, several appendices present
expanded treatment of certain subjects. Appendix A explores the topic of noise
correlations in amplitude-limited gaussian noise channels. Appendix B presents
a noise figure analysis of the MOSFET device using the classical technique.
Appendix C presents some experimental results on two low-noise amplifiers:
a single-ended amplifier and a differential amplifier. Finally, Appendix D
describes the measurement techniques used to gather the experimental data
reported in Chapter 7.
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