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Preface 

Linear Optimization^ (LO) is one of the most widely taught and apphed mathematical 
techniques. Due to revolutionary developments both in computer technology and 
algorithms for linear optimization, 'the last ten years have seen an estimated six orders 
of magnitude speed improvement'.^ This means that problems that could not be solved 
10 years ago, due to a required computational time of one year, say, can now be solved 
within some minutes. For example, linear models of airline crew scheduling problems 
with as many as 13 million variables have recently been solved within three minutes 
on a four-processor Silicon Graphics Power Challenge workstation. The achieved 
acceleration is due partly to advances in computer technology and for a significant 
part also to the developments in the field of so-called interior-point methods for linear 
optimization. 

Until very recently, the method of choice for solving linear optimization problems 
was the Simplex Method of Dantzig [59]. Since the initial formulation in 1947, this 
method has been constantly improved. It is generally recognized to be very robust and 
efficient and it is routinely used to solve problems in Operations Research, Business, 
Economics and Engineering. In an effort to explain the remarkable efficiency of the 
Simplex Method, people strived to prove, using the theory of complexity, that the 
computational effort to solve a linear optimization problem via the Simplex Method 
is polynomially bounded with the size of the problem instance. This question is still 
unsettled today, but it stimulated two important proposals of new algorithms for LO. 
The ffrst one is due to Khachiyan in 1979 [167]: it is based on the ellipsoid technique 
for nonlinear optimization of Shor [255]. With this technique, Khachiyan proved that 
LO belongs to the class of polynomially solvable problems. Although this result has 
had a great theoretical impact, the new algorithm failed to deliver its promises in 
actual computational efficiency. The second proposal was made in 1984 by Karmar-
kar [165]. Karmarkar's algorithm is also polynomial, with a better complexity bound 

^ The field of Linear Optimization has been given the name Linear Programming in the past. The 
origin of this name goes back to the Dutch Nobel prize winner Koopmans. See Dantzig [60]. 
Nowadays the word 'programming' usually refers to the activity of writing computer programs, 
and as a consequence its use instead of the more natural word 'optimization' gives rise to confusion. 
Following others, like Padberg [230], we prefer to use the name Linear Optimization in the 
book. It may be noted that in the nonlinear branches of the field of Mathematical Programming 
(like Combinatorial Optimization, Discrete Optimization, SemideRnite Optimization, etc.) this 
terminology has already become generally accepted. 

^ This claim is due to R.E. Bixby, professor of Computational and Applied Mathematics at Rice 
University, and director of CPLEX Optimization, Inc., a company that markets algorithms for 
linear and mixed-integer optimization. See the news bulletin of the Center For Research on Parallel 
Computation, Volume 4, Issue 1, Winter 1996. Bixby adds that parallelization may lead to 'at least 
eight orders of magnitude improvement—the difference between a year and a fraction of a second!' 
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than Khachiyan, but it has the further advantage of being highly efficient in practice. 
After an initial controversy it has been established tha t for very large, sparse problems, 
subsequent variants of Karmarkar 's method often outperform the Simplex Method. 

Though the field of LO was considered more or less mature some ten years ago, after 
Karmarkar 's paper it suddenly surfaced as one of the most active areas of research in 
optimization. In the period 1984-1989 more than 1300 papers were published on the 
subject, which became known as Interior Point Methods (IPMs) for LO.^ Originally 
the aim of the research was to get a bet ter understanding of the so-called Projective 
Method of Karmarkar. Soon it became apparent tha t this method was related to 
classical methods like the Affine Scaling Method of Dikin [63, 64, 65], the Logarithmic 
Barrier Method of Frisch [86, 87, 88] and the Center Method of Huard [148, 149], 
and tha t the last two methods could also be proved to be polynomial. Moreover, it 
turned out tha t the IPM approach to LO has a natural generalization to the related 
field of convex nonlinear optimization, which resulted in a new stream of research 
and an excellent monograph of Nesterov and Nemirovski [226]. Promising numerical 
performances of IPMs for convex optimization were recently reported by Breitfeld 
and Shanno [50] and Jarre, Kocvara and Zowe [162]. The monograph of Nesterov 
and Nemirovski opened the way into another new subfield of optimization, called 
Semidefinite Optimization, with important applications in System Theory, Discrete 
Optimization, and many other areas. For a survey of these developments the reader 
may consult Vandenberghe and Boyd [48]. 

As a consequence of the above developments, there are now profound reasons why 
people may want to learn about IPMs. We hope tha t this book answers the need of 
professors who want to teach their students the principles of IPMs, of colleagues who 
need a unified presentation of a desperately burgeoning field, of users of LO who want 
to understand what is behind the new IPM solvers in commercial codes (CPLEX, OSL, 
. . . ) and how to interpret results from those codes, and of other users who want to 
exploit the new algorithms as part of a more general software toolbox in optimization. 

Let us briefiy indicate here what the book offers, and what does it not. Par t I 
contains a small but complete and self-contained introduction to LO. We deal with 
the duality theory for LO and we present a first polynomial method for solving an LO 
problem. We also present an elegant method for the initialization of the method, 
using the so-called self-dual embedding technique. Then in Par t II we present a 
comprehensive t reatment of Logarithmic Barrier Methods. These methods are applied 
to the LO problem in s tandard format, the format tha t has become most popular in 
the field because the Simplex Method was originally devised for tha t format. This 
part contains the basic elements for the design of efficient algorithms for LO. Several 
types of algorithm are considered and analyzed. Very often the analysis improves the 
existing analysis and leads to sharper complexity bounds than known in the literature. 
In Par t III we deal with the so-called Target-following Approach to IPMs. This is a 
unifying framework tha t enables us to t reat many other IPMs, like the Center Method, 
in an easy way. Par t IV covers some additional topics. It s tarts with the description 
and analysis of the Projective Method of Karmarkar. Then we discuss some more 

^ We refer the reader to the extensive bibUography of Kranich [179, 180] for a survey of the 
hterature on the subject until 1989. A more recent (annotated) bibliography was given by Roos 
and Terlaky [242]. A valuable source of information is the World Wide Web interior point archive: 
h t tp : / /www.mcs .anl .gov/home/otc / In ter iorPoin t .a rchive .h tml . 

http://www.mcs
http://anl.gov/home/otc/InteriorPoint
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interesting theoretical properties of the central path. We also discuss two interesting 
methods to enhance the efficiency of IPMs, namely Part ial Updating, and so-called 
Higher-Order Methods. This part also contains chapters on parametric and sensitivity 
analysis and on computational aspects of IPMs. 

It may be clear from this description tha t we restrict ourselves to Linear Optim­
ization in this book. We do not dwell on such interesting subjects as Convex Optim­
ization and Semidefinite Optimization, but we consider the book as a preparation for 
the study of IPMs for these types of optimization problem, and refer the reader to the 
existing literature.^ 

Some popular topics in IPMs for LO are not covered by the book. For example, 
we do not t reat the (Primal) Affine Scaling Method of Dikin.^ The reason for this 
is tha t we restrict ourselves in this book to polynomial methods and until now the 
polynomiality question for the (Primal) Affine Scaling Method is unsettled. Instead 
we describe in Appendix E a primal-dual version of Dikin's affine-scaling method 
tha t is polynomial. Chapter 18 describes a higher-order version of this primal-dual 
affine-scaling method tha t has the best possible complexity bound known until now 
for interior-point methods. 

Another topic not touched in the book is (Primal-Dual) Infeasible Start Methods. 
These methods, which have drawn a lot of at tention in the last years, deal with the 
situation when no feasible start ing point is available.^ In fact. Par t I of the book 
provides a much more elegant solution to this problem; there we show tha t any given 
LO problem can be embedded in a self-dual problem for which a feasible interior 
start ing point is known. Further, the approach in Par t I is theoretically more efficient 
than using an Infeasible Start Method, and from a computational point of view is not 
more involved, as we show in Chapter 20. 

We hope tha t the book will be useful to students, users and researchers, inside and 
outside the field, in offering them, under a single cover, a presentation of the most 
successful ideas in interior-point methods. 

Kees Roos 
Tamas Terlaky 
Jean-Philippe Vial 

Preface to the 2005 edition 

Twenty years after Karmarkar 's [165] epoch making paper interior point methods 
(IPMs) made their way to all areas of optimization theory and practice. The theory of 
IPMs matured, their professional software implementations significantly pushed the 
boundary of efficiently solvable problems. Eight years passed since the first edition 
of this book was published. In these years the theory of IPMs further crystallized. 
One of the notable developments is tha t the significance of the self-dual embedding 

^ For Convex Optimization the reader may consult den Hertog [140], Nesterov and Nemirovski [226] 
and Jarre [161]. For Semidefinite Optimization we refer to Nesterov and Nemirovski [226], 
Vandenberghe and Boyd [48] and Ramana and Pardalos [236]. We also mention Shanno and 
Breitfeld and Simantiraki [252] for the related topic of barrier methods for nonlinear programming. 

^ A recent survey on affine scaling methods was given by Tsuchiya [272]. 

^ We refer the reader to, e.g., Potra [235], Bonnans and Potra [45], Wright [295, 297], Wright and 
Ralph [296] and the recent book of Wright [298]. 



xxii Preface 

model - t h a t is a distinctive feature of this book- got fully recognized. Leading linear 
and conic-linear optimization software packages, such as MOSEK^ and SeDuMi^ are 
developed on the bedrock of the self-dual model, and the leading commercial linear 
optimization package CPLEX^ includes the embedding model as a proposed option to 
solve difficult practical problems. 

This new edition of this book features a completely rewritten first part . While 
keeping the simplicity of the presentation and accessibility of complexity analysis, 
the featured IPM in Par t I is now a standard, primal-dual path-following Newton 
algorithm. This choice allows us to reach the so-far best known complexity result in 
an elementary way, immediately in the first part of the book. 

As always, the authors had to make choices when and how to cut the expansion of 
the material of the book, and which new results to include in this edition. We cannot 
resist mentioning two developments after the publication of the first edition. 

The first development can be considered as a direct consequence of the approach 
taken in the book. In our approach properties of the univariate function '0(t), as defined 
in Section 5.5 (page 92), play a key role. The book makes clear tha t the primal-, dual-
and primal-dual logarithmic barrier function can be defined in terms of '0(t), and 
as such '0(t) is at the heart of all logarithmic barrier functions; we call it now the 
kernel function of the logarithmic barrier function. After the completion of the book 
it became clear tha t more efficient large-update IPMs than those considered in this 
book, which are all based on the logarithmic barrier function, can be obtained simply 
by replacing '0(t) by other kernel functions. A large class of such kernel functions, 
tha t allowed to improve the worst case complexity of large-update IPMs, is the family 
of self-regular functions, which is the subject of the monograph [233]; more kernel 
functions were considered in [32]. 

A second, more recent development, deals with the complexity of IPMs. Until now, 
the best iteration bound for IPMs is 0{^/nL)^ where n denotes the dimension of the 
problem (in s tandard from), and L the binary input size of the problem. In 1996, Todd 
and Ye showed tha t 0{^/nL) is a lower bound for the iteration complexity of IPMs 
[267]. It is well known tha t the iteration complexity highly depends on the curliness 
of the central path, and tha t the presence of redundancy may severely affect this 
curliness. Deza et al. [61] showed tha t by adding enough redundant constraints to the 
Klee-Minty example of dimension n, the central pa th may be forced to visit all 2^ 
vertices of the Klee-Minty cube. An enhanced version of the same example, where the 
number of inequalities is Â  = 0(2^^n^) , yields an 0{'\fN/\ogN) lower bound for the 
iteration complexity, thus almost closing (up to a factor of log N) the gap with the 
best worst case iteration bound for IPMs [62]. 

Instructors adapting the book as textbook in a course may contact the authors at 
<terlaky@mcmaster .ca> for obtaining the "Solution Manual" for the exercises and 
getting access to a user forum. 

March 2005 Kees Roos 
Tamds Terlaky 
Jean-Philippe Vial 

^ MOSEK: http://www.mosek.com 

^ SeDuMi: h t tp : / / sedumi .mcmaster .ca 
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