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Abstract
This paper investigates numerically and experimentally an electronic circuit modelling the dynamics of a system without 
equilibrium point recently introduced by Shahzad et al. (Eur Phys J Spec Top 224:1637–1652, 2015). By varying the param-
eters of the electronic circuit, new behaviors are found including antimonotonicity, chaotic bistable hidden attractors, 
chaotic bubble hidden attractors, offset boosting and partial amplitude control. Another outcome of this paper is the 
forward and reversed interior crisis features found in a chaotic circuit without equilibrium point. Laboratory experiments 
and PSIM simulations are carried out to confirm results predicted by numerical simulations.

Keywords  Chaotic circuit · Antimonotonicity · Chaotic hidden bubble attractors · Offset boosting and partial amplitude 
control · PSIM analog simulations · Laboratory electronic experiments

1  Introduction

In the last five decades, chaos as a very rich and interesting 
complicated nonlinear phenomena has been intensively 
studied. A system is said to be chaotic, if its sensitive to 
initial conditions and has an infinite number of unstable 
periodic trajectories of different periods. Chaotic systems 
have been widely applied in various fields, such as econ-
omy [42], biology [44], medical diagnosis [9, 23], neural 
network [48], image encryption [5], secure communication 
[7], mechanic [54] just to name a few. Recently, research-
ers have introduced a new classification of nonlinear sys-
tems in which they focused on two kinds of attractors: 
self-excited and hidden attractors. A self-excited attrac-
tor is defined as an attractor that the basin of attraction 

is excited from unstable equilibria [29]. From this point 
of view, most known nonlinear systems, such as Lorenz 
system, Rössler system [36], Chen system or Van der Pol 
oscillator [14], belong to chaotic systems with self-excited 
attractors [2]. In contrast, a few unusual systems such as 
those with an infinite number of equilibrium points, with 
stable equilibria, or without equilibrium belong to systems 
with hidden attractors [25, 30, 31, 35, 38, 51]. They are 
called hidden attractors because their basin of attraction 
does not intersect with a small neighborhoods of equilib-
ria [1, 28, 29, 37].

Although there exist a large number of published 
studies describing chaotic systems with a countable 
number of saddle equilibrium points, chaotic sys-
tems without equilibrium have been subjected to 
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considerable discussions recently [15, 24, 49, 50, 53]. 
Hidden attractors are important in engineering appli-
cations because they allow the understanding of some 
unexpected and potentially disastrous behaviors in 
structures like: nonlinear power supply, bridges, electri-
cal transport lines, aircraft wing and so on [17]. There-
fore, study their behaviors is of great importance in 
engineering. These systems are very challenging and 
their investigation may reveal several nonlinear phe-
nomena. It is worth nothing to remark that systems 
without equilibrium points reported in the literature, 
show little knowledge about the special phenomena, 
such as bistability, interior crisis, amplitude and offset 
control or antimonotonicity. For these reasons, we set 
our goal to study a system without equilibrium points 
that could present these interesting properties. The 
first property is bistability which is a very important 
feature of nonlinear systems [4, 13, 19, 40, 46] because 
they have potential engineering applications such as 
modelling memory in neural network [56, 3, 26] or 
random bit generation [34]. The second feature is anti-
monotonicity phenomena which arises where periodic 
orbits are created and destroyed as a control param-
eter is varied. This latter one is common in nonlinear 
systems with equilibrium points such as Duffing, Van 
der pol oscillator or Chua circuit, but rarely occurs in 
systems without equilibrium points. The third phenom-
enon is the interior crisis which concerns the global sta-
bility of the system. When a chaotic attractor is globally 
stable and a parameter is varied, the attractor moves 
and can intersect with the basin boundary. The sys-
tem loses its global stability. This phenomenon is also 
very common in nonlinear systems with equilibria but 
rarely reported in systems without equilibria [12, 20, 21, 
27]. The reported phenomenon of interior crisis in this 
paper arise both in forward and reverse directions not 
yet illustrated in a system without equilibrium points 
as far as the knowledge of authors go. The last phe-
nomenon is the offset boosting and partial amplitude 
control. This behavior can be implemented in the cir-
cuit. Therefore it can be used as a chaotic transmitting 
encoder of sensitive messages in an unsecured channel 
while adjusting the transmitted signal to the channel 
characteristics [39, 43]. It could also be used to improve 
radio frequency conversion efficiency in rectifier cir-
cuits for efficient wireless power transmission [18].

As a result, deeper exploration of systems with hid-
den attractors is an interesting topic for engineering 
applications and academic significance, therefore 
should receive further attentions. Research on hid-
den attractors are still going on and the investigation 
of striking behaviors offers a great challenge. On this 
way, systematic search to find 3-D chaotic systems 

with quadratic nonlinearity and no-equilibrium point 
was performed by Sajad et al. [16]. They discovered 17 
examples of such systems. Among them, NE8 is a spe-
cific example which derives from Sprott A system. It is 
a special case of Nose–Hoover [41, 47] oscillator that 
describes fluid flow, solid diffusion viscosity or heat 
conduction in engineering system. Motivated by the 
above idea, this paper presents deeper analysis of the 
dynamics of the electronic modified model NE8 slightly 
studied by Shahzad et al. [45]. They reported twin coex-
isting hidden attractors and the synchronisation of two 
coupled of NE8 using robust adaptive sliding mode 
control method. Our objective for deeper investigation 
of this system, is to enrich the literature with a system, 
presenting no-equilibrium point and exhibiting more 
complex behaviors . To the best of our knowledge, 
there are only few electronic circuits exhibiting bistable 
hidden chaotic attractors with antimonotonicity, inte-
rior crisis, offset booting and partial amplitude control.

The rest of this paper is structured as follows. We 
describe the circuit, its state equations and its general 
properties in Sect. 2. Numerical analysis of the system 
in order to predict the behavior of the circuit are pre-
sented in Sect. 3. Section 4 deals with PSIM based simu-
lations and experimental studies in order to validate 
numerical simulations. Some concluding remarks are 
presented in Sect. 5.

2 � Circuit description and modelling

The schematic diagram and experimental printed circuit 
board of the suggested system without equilibrium point 
are presented in Fig. 1. The electronic circuit contains six lin-
ear operational amplifiers, three analog multipliers, twelve 
resistors and three capacitors.

The Kirchhoff’s laws can be applied to the schematic dia-
gram of Fig. 1a to obtain the following set of three coupled 
first order differential equations describing the dynamic of 
the system:

For the following changes of the variables and parameters,
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(a)

(b)

Fig. 1   a Electronic circuit diagram of the suggested system without 
equilibrium point (3) and b its experimental printed circuit board 
(PCB). The integrated circuits (IC) U1, U2, U3 are analog multipliers 
AD633/JN and OP1–OP6 are operational amplifiers TL082 operating 
in their linear regime. The IC are powered by a symmetric voltage 
source ± 15 V DC. Capacitors C are ceramic type of 10 nF and R are 

low power resistors of 10 kΩ . The resistors R4 = 100 kΩ , R3 = 1 kΩ , 
the resistors R2 and R1 are variable resistors. The voltage VDC1 is an 
independent direct voltage source of 1 V. (For the interpretation 
of the references to color in this figure, the reader is referred to the 
web version of this article)
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the set of Eq. (1) are expressed by the following nonlinear 
third-order differential equations:

where the dot denotes differentiation with respect 
to the dimensionless time � . It is trivial to deduce the 
equilibrium points of system (3) by solving ẋ = 0 ; ẏ = 0 ; 
ż = 0 . This computation shows that there is no equilib-
rium point since T2 ≠ 0 . Therefore, the system under 
investigation belongs to the rare class of systems with-
out equilibria. It is easy to notice that system (3) is invar-
iant under the transformation: (x, y, z) ⇔ (−x,−y, z) . In 
the mathematical model (3), two parameters are identi-
fied T1 and T2 . The modified system NE8 presented in Eq. 
(3) has two tuning parameters in contrary to one in Ref. 
[45] where the only controlled parameter is T2 . The sec-
ond parameter allows us as it shall be seen in Sect. 3 to 
discover more nonlinear phenomena in contrast to only 
symmetric coexisting attractors reported in Ref. [45].

3 � Numerical studies

The regions of various dynamical behaviors of system 
(3) as a function of two parameters T1 and T2 are shown 
in Fig. 2. It is noticed that chaotic bands (black color) are 
surrounded in upper limit by periodic behaviors (cyan 
color) and in lower limit (on the right side) by unbound 
behavior of the system (red color). We remark also some 

(3)

⎧
⎪
⎨
⎪
⎩

ẋ = y,

ẏ = −x − 10yz,

ż = 0.1xy + 0.1T1x
2 − 0.1T2,

tiny bands of periodic behaviors separating large band of 
chaotic behaviors.

3.1 � Period‑doubling route to bistable chaos

The bifurcation diagram of the state variable x(�) and 
the corresponding Maximum Lyapunov exponent with 
respect to the parameter T1 is presented in Fig. 3.

The bifurcation diagram in Fig. 3a contains two sets 
of data: increasing (black) and decreasing (red) values of 
the control parameter T1 superimposed.

This Bifurcation diagram shows that the system under-
goes period-doubling in the range 0.25 < T1 < 0.35 ; 
i .e. period-1 → period-2→ period-4→ period-8→ 
period-16→ … chaos. It is noticeable that two bistable 
attractors exist in this interval of T1 . The two symmetric 
bistable chaotic attractors merge to form a unique cha-
otic attractor for T1 in the interval 0.41 < T1 < 0.49 . Finally, 
the phenomenon of reverse period-doubling occurs for 
T1 = 0.57 . Within the interval 0.57 < T1 < 0.65 reversed 

Fig. 2   The 2-parameters bifurcation diagram in plane ( T1 , T2 ) depict-
ing regions of various dynamical behaviors of system (3) including 
chaotic, periodic, and unbounded behaviors shown respectively 
in black, cyan and red. (For the interpretation of the references to 
color in this figure, the reader is referred to the web version of this 
article)

(a)

(b)

Fig. 3   Bifurcation diagrams (a) and corresponding graph of largest 
Lyapunov exponent (b) showing various behaviors of the system 
(3) for increasing parameter T1 (black) and decreasing parameter T1 
(red); the parameter T2 is fixed as T2 = 1.476 and the initial condi-
tions are chosen as (x0;y0;z0) = (0.1;3.9;0.1) . (For the interpretation 
of the references to color in this figure, the reader is referred to the 
web version of this article)
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period-doubling continue in this pattern: chaos→ … 
period-16→ period-8→ period-4→ period-2→ period-1. 
It can be seen that the bifurcation diagram coincides 
with the spectrum of the largest Lyapunov exponent 
(see Fig. 3b) which is computed numerically based on 
the algorithm described by Wolf et al. [55]. The phase 
portraits of bistable hidden attractors are shown in Fig. 4.

3.2 � Forward and reverse interior crisis

The striking phenomenon of interior crisis was first dis-
covered by Grebori et al. [10, 11]. It was described as a 
bifurcation event in which a chaotic attractor suddenly 
expands in size. This event occurs frequently in chaotic 
systems when the chaotic attractor collides with the 
unstable manifold of the equilibrium point as a param-
eter is varied. Figure 5 displays a zoom of Fig. 3 for T1 in 
the range 0.38 ≪ T1 ≪ 0.52.

In Fig. 5, one can observe that for T1 < 0.4 , the attrac-
tor consists of one distinct band which is developed 
from period-doubling cascade. At T1 = Tcritical

1−low
≈ 0.3982 , 

the attractor suddenly expands and fill the previous 
avoided area illustrating the interior crisis phenomenon. 
By increasing T1 , this behavior remains until T1 ≈ 0.49 . At 
T1 = Tcritical

1−high
≈ 0.4997 , the attractor suddenly reduces and 

continues this reduction in size with the phenomenon 
of reverse period-doubling. This is typically the descrip-
tion of the reverse interior crisis event. Notice that the 
maximum Lyapunov exponent is  the highest 
( 𝜆max > 0.04 ) in the crisis interval 0.3982 ≪ T1 ≪ 0.4997 
revealing the high degree of chaos during crisis. (See 
Fig. 5b). This striking phenomena is confirmed by the 
phase portraits in Fig. 6(i) where one can easily depict 

attractors before (Fig.  6a), during (Fig.  6b) and after 
(Fig. 6c) the interior crisis events.

The reader can notice abrupt change in the size of the 
attractor. The computed power density spectra in (6)(ii) 

(a) (b) (c)

Fig. 4   2-D plots of numerical chaotic phase portraits showing 
bistability behavior of hidden attractors (red and black curves 
superimposed) in system (3) in the planes a x − y , b y − z , c x − z 
with T2 = 1.476 and T1 = 0.395 . The initial conditions are fixed as 

(x0;y0;z0) = (0.1; ± 3.9;0.7) . (For the interpretation of the references 
to color in this figure, the reader is referred to the web version of 
this article)

(a)

(b)

Fig. 5   Bifurcation diagram (a) and corresponding graph of the larg-
est Lyapunov exponent (b) showing a zoom of the interior crisis 
intervals of x (�) in Fig. 3 with respect to the parameter T1 . T2 is fixed 
as T2 = 1.476 . Forward interior crisis occurs at Tcritical

1−low
≈ 0.3982 and 

reverse interior crisis occurs at Tcritical
1−high

≈ 0.4997 . Initial conditions 
are fixed as (x0; y0; z0) = (0.1; 0.1; 0.1)
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Fig. 6   2-D projections of the 
attractors of system (3) in the 
z − y plane (i) and the corre-
sponding graph of the power 
density spectra (ii) illustrating 
crisis transitions: the transi-
tion from (�) ⇒ (�) indicates 
the forward interior crisis 
behavior; while the transition 
from (�) ⇒ (�) corresponds to 
reverse interior crisis phenom-
enon. The values of the param-
eters are selected as T1=0.395 
in (a), T1=0.49 in (b) and T1=0.5 
in (c). T2 is fixed as T2 = 1.476 
and the initial conditions are 
(x0; y0; z0) = (0.1; 0.1; 0.1)

(a)

(b)

(c)
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confirm these sequences. Finally, interior crisis phenom-
ena sometimes occur in dynamical systems [21, 22, 27], 
but it is rarely followed by reverse interior crisis. Thus, 
constitutes a major finding in this recently introduced 
system by Shahzad et al. [45].

3.3 � Antimonotonicity

The phenomenon of antimonotonicity was first dis-
covered in nonlinear systems by Dawson et al. [6]. It is 
described as periodic orbits that can be created and 
then annihilated via reverse period-doubling bifurca-
tion scenarios as a control parameter is varied. For the 
system under investigation, the numerically computa-
tion of the bifurcation diagrams in Fig. 7 (using T2 as a 
discrete parameter see Fig. 2) illustrates antimonotonic-
ity behavior.

For T2 = 1.56 in Fig. 7a, a period-2 bubble is observed 
and the branch develops a stable period-4 bubble at 
T2 = 1.55 (see Fig. 7b). As T2 is further increased, more bub-
bles in Fig. 7c–e are created until an infinitely tree (like 
chaos) finally occurs in Fig. 7f. Accordingly, a first-return 
map of the local maxima of the coordinate x(�),Mn+1[x(�)] 
=function(Mn[x(�)]) is plotted in Fig. 8a in order to con-
firm the phenomenon of antimonotonicity in the system 
described by Eq. (3) and illustrated in Fig. 7.

The map of Fig. 8a is indicative of one-dimensional map 
with two critical points P1 and P2 located on each side of 
the first mediatrix. Therefore, system (3) under investiga-
tion according to the results of Dawson exhibits antimono-
tonicity phenomenon. Accordingly, chaotic hidden bubble 
attractor are depicted in Fig. 8b–d.

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 7   Bifurcation diagrams illustrating local maxima of the coor-
dinate x(�) in terms of control parameter T1 showing antimono-
tonicity phenomenon (bubbles) in system (3): a primary bubble 
for T2 = 1.56 ; b period-4 bubble for T2 = 1.55 ; c period-8 bubble 

for T2 = 1.54 ; d–f full Feigenbaum remerging tree at T2 = 1.53 , 
T2 = 1.52 and T2 = 1.49 , respectively. Parameters are: initial condi-
tions (x0;y0;z0) = (0.1;0.1;0.1) and T1 in the range 0.25 ≤ T1 ≤ 0.7
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3.4 � Offset boosting and partial amplitude control

Our goal in this subsection, is to illustrate the flexibility of 
system (3) to be used as a chaotic encoder circuit using 
a varying resistor. It could then replace extra expensive 
amplifier or attenuator in security transmission systems 
where the chaotic circuit is used as signal source. As in 
[32, 33], we used the re-scaling factor m ≠ 0 method to 
control the amplitude of the x and y variables of system (3). 
To show this, let’s insert in system (3) x → x∕m , y → y∕m , 
z → z . The parameter m remains only in the quadratic 
terms. Then, the amplitude control scheme adjust the size 
of the attractor only in the x and y axes [according to the 
third line of Eq. (4)]. The offset boosting control is obtained 
by replacing z by (z + k) in the second equation of system 
(4). To this end, parameters m and k are used as control 
knobs to achieve respectively the offset boot control and 
partial amplitude goals. The resulting system is as follows.

where k and m are defined above. Figure 9 displays chaotic 
attractors in (a) z − x plane and (b) in z − y plane.

In Fig. 9, attractors are adjusted in the z−axis by means 
of the control parameter k. Interestingly, when increasing 
k from − 0.1 to 2.6, the location of the attractor in the z-axis 
moves downward from the interval [− 0.1 1.6] (black dia-
grams) to [− 2.8 − 1.1] (red diagrams). The average value of 
the state variables of system (4) versus the control param-
eter k is presented in Fig. 10.

Figure 10 shows that the offset controller k will only 
change the average value of the signal z but will not 
influence the dynamics of the chaotic system. The phase 
portraits of system (4) for different values of the control 

(4)

⎧
⎪
⎨
⎪
⎩

ẋ = y,

ẏ = −x − 10y(z + k),

ż = m[0.1xy + 0.1T1x
2] − 0.1T2,

Fig. 8   a First-return map of the 
local maxima of the coordinate 
x(� ) with two critical points 
P1 and P2 located on each 
side of the line of equation 
Mn+1[x(�)] = Mn[x(�)] con-
firming the phenomenon of 
antimonotonicity in system (3). 
b–d 2D phase portraits of cha-
otic bubbles obtained with the 
parameters of Fig. 7d (bubbles) 
and the parameter T1 = 0.42
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parameter m are depicted in Fig. 11 confirming the offset 
boosting in the x and y axes.

In Fig. 11, one can notice that the amplitude of vari-
able x (see Fig. 11a) and y (see Fig. 11b) are stretched or 
expanded according to the factor m. The attractor along 
the z-axis does not change in size because the parameter 
m in the third equation of system (4) does not affect the 
variable z.

4 � PSIM simulations and experimental 
results

Our goal in this section is to verify the offset boosting 
and the partial amplitude control features by using PSIM 
and also the bistable chaotic and bubble hidden attrac-
tors behaviors using the experimental PCB of the circuit 
in Fig. 1b. Therefore, a suitable electronic circuit from 
mathematical model is designed (4) and illustrated in 
Fig. 12.

It is easy to see that the resulting circuit is a slightly 
modification of the circuit in Fig. 1a. The two newly intro-
duced parameters in model (4) are converted as follows: 
The first parameter m is set using the tuning resistor 
Rm while the second parameter k is set using the new 
feedback loop containing variable resistor Rk . Applying 

Kirchhoff’s laws to the circuit of Fig. 12, the following set 
of differential equations (5) are obtained.

By setting Rk as an open resistor, Rm = R and using Eq. (2), 
the set of three differential equations of Eq. (5) are the 
same in Eq. (1).

The first confirming result of this section, is the offset 
boosting of the chaotic attractor in the Vz axis shown in 
Fig. 13a, b.

These figures are obtained by setting the knob resis-
tor Rk in the circuit of Fig. 12 as: Rk = 10 kΩ , (black curve), 
Rk = 0.66 kΩ (blue curve) and Rk = 0.4 kΩ (red curve) 
( Rk = R∕k ). The reader can verify that in Fig. 13, projec-
tions of the resulting attractors in (a) Vz − Vx plane and 
in (b) Vz − Vy plane are similar with numerical results in 
Fig. 9 of Sect. 3.4.

The second confirming result of this section, is the par-
tial amplitude control feature (see Fig. 13c, d) of the circuit 
of Fig. 12. The attractor is stretched (or shrunk) along the 
Vx and Vy (see Fig. 13c, d) axes by setting the twin knob 
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Fig. 9   Chaotic phase portraits of system (4) showing offset boost-
ing dynamics for different values of the control parameter k: a 
projection in z − x plane and b projection in z − y plane. k = − 0.1 
(black); k = 1.5 (blue) and k = 2.6 (red). The system parameters are 

fixed as m = 1 , T1 = 0.41 , T2 = 1.476 and the initial conditions are 
selected as (x0; y0; z0) = (0.1; 0.1; 0.1) . (For the interpretation of the 
references to color in this figure, the reader is referred to the web 
version of this article)
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resistors Rm , ( Rm = R∕m ) of circuit in Fig. 12 to Rm = 200 kΩ 
(black curve), Rm = 12 kΩ (blue curve) and Rm = 50 kΩ (red 
curve).: (c) Projection in Vz − Vx plane and (d) projection in 
Vz − Vy plane: The resistor Rk = ∞ (open loop). There are 
good agreements with numerical results in Fig. 11 of the 
numerical Sect. 3.4.

The experimental results captured on the PCB, display 
in Figs. 14 and 15 confirmed the chaotic bistable and cha-
otic bubble hidden attractors in the circuit respectively.

The DC voltage is tuned to 1.59 V, the first resistor R2 
to 10 kΩ and the second resistor R1 is slowly adjusted 
from 2 to 6 kΩ . The Fig. 14a–c show 2D phase portraits 
of chaotic bistability behavior of the circuit. The first line 
of figures resembles the black attractors in Fig. 4 while 
the second line of figures resembles the red attractors 
in Fig. 4.

The experimental results of the chaotic bubbles hidden 
attractors are display in Fig. 15.

While slightly adjusting resistor R2 around 15 kΩ , two 
chaotic bubbles appear on the 2D phase portraits as 
illustrated in Fig. 15a–c confirming theoretical results in 
Fig. 8.

It can be notice that the measured values of the resistor 
R1 and R2 are slightly different from those that are in the 
theoretical analysis. This is always due to the assumption 
made to different electronic components in the theoretical 
section (ideal operational amplifier, zero tolerance on the 
resistor value, non-ideal capacitor).

Fig. 10   Mean value of state variables x(�) , y(�) , z(�) for increasing 
value of the offset boosting controller, k ∈ [− 0.1, 2.5] displaying 
the offset boosting dynamics in system (4). The initial conditions 
setting are (x0; y0; z0) = (0.1; 0.1; 0.1) . (For the interpretation of the 
references to color in this figure, the reader is referred to the web 
version of this article)

Fig. 11   Amplitude control of chaotic attractors of system (4) 
for different values of the parameters m: a projection in z − x 
plane and b projection in z − y plane. m = 0.5 (black); m = 1.2 
(blue) and m = 2.5 (red). The rest of the parameters are fixed 

as: T1 = 0.41 , T2 = 1.476 , k = 0 and the initial conditions are 
(x0; y0; z0) = (0.1; 0.1; 0.1) . (For the interpretation of the references 
to color in this figure, the reader is referred to the web version of 
this article)
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5 � Conclusion

In this paper, an electronic circuit modelling the dynam-
ics of a chaotic system without equilibrium point recently 
introduced by Shahzad et al. [45] was investigated using 
conventional nonlinear dynamic methods and algo-
rithms. This study shows that the circuit displays new 
dynamical behaviors, including antimonotonicity, bista-
ble chaotic hidden attractors, chaotic hidden bubbles 
attractors, interiors crisis (reverse and forward) and off-
set boosting and partial amplitude control. The bistable 
and bubble chaotic hidden attractors were illustrated 

experimentally using the electronic circuit realized 
while the offset boosting and partial amplitude control 
were verified using PSIM simulations. An electronic cir-
cuit describing the chaotic system without equilibrium 
point is realized. The observed dynamical behaviors are 
consistent with those revealed numerically. We are con-
vinced that the results obtained in this paper complete 
the ones in [45], and enrich the literature with the inter-
esting behaviors of the NE8 no equilibrium system. The 
chaos-based firefly algorithms [8, 52], will be use in future 
works to outline promising avenues in the system rate 
equations of the circuit under investigation.

Fig. 12   Electronic circuit implementation of the model (4) obtained by adding variables resistors Rk and Rm to the circuit in Fig. (1). Rk and Rm 
variable resistors. R1 = 4.1 kΩ and R2 = 14.76 kΩ . The dark dots stand for simultaneous adjustment of resistor 10Rm
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Fig. 13   Chaotic phase portraits of the circuit of Fig.  12 showing: 
(first line of figures) offset boosting dynamics for different values 
of the variable resistor Rk . ( Rk = R∕k ): a projection in Vz − Vx plane 
and b projection in Vz − Vy plane: Rk = 10 kΩ (black); Rk = 0.66 kΩ 
(blue) and Rk = 0.4 kΩ (red). The circuit resistor Rm is set as 
Rm = 100 kΩ . (second line of figures) Amplitude control dynam-
ics for different values of the variable resistor Rm . ( Rm = R∕m ): c 

projection in Vz − Vx plane and d projection in Vz − Vy plane: 
Rm = 200 kΩ (black); Rm = 12 kΩ (blue) and Rm = 50 kΩ (red). 
The circuit resistor Rk is Rk = ∞ (open loop). Initial conditions 
(Vx0; Vy0; Vz0) = (0.001 V;3.9 V;0.1 V) . (For the interpretation of the 
references to color in this figure, the reader is referred to the web 
version of this article)
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Fig. 14   Chaotic phase portraits captured on PCB confirming the 
bistability(bistable chaotic hidden attractors) behavior in the 
circuit of Fig.  1b under investigation in the planes a Vx − Vy , b 

Vy − Vz , c Vx − Vz . This figure reproduces Fig. 4. Resistors value are 
R2 = 14.76 kΩ and R1 = 0.395 kΩ

Fig. 15   chaotic phase portraits captured on PCB confirming the 
phenomenon of antimonotonicity (chaotic bubble hidden attrac-
tors) in the circuit (in Fig. 1b) in the planes a Vx − Vy , b Vy − Vz , c 

Vx − Vz . These figures reproduce Fig.  8b–d. Resistors value are: 
R2 = 15.35 kΩ and R1 = 4.2 kΩ
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