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Abstract
Zinc oxide (ZnO) (K1) doped with rare earth metals (REM) such as lanthanum doped ZnO (K2), cerium doped ZnO (K3) 
and neodymium doped ZnO (K4) nanoparticles (NPs) were synthesized by green method using Gymnema sylvestre (G. 
sylvestre) leaves extract as reducing as well as capping agent and this method was also one of the alternatives to conven-
tional physical and chemical methods. The synthesized K1, K2, K3 and K4 samples were characterized by X-ray diffraction 
analysis (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), energy 
dispersive X-ray spectroscopy (EDAX), Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy, photo-
luminescence (PL) techniques and electron para magnetic resonance (EPR) spectroscopy. The K1, K2, K3 and K4 samples 
were tested against clinical pathogens such as gram positive G+ (Staphylococcus aureus and Streptococcus pneumoniae) 
and gram negative G− (Klebsiella pneumoniae, Shigella dysenteriae, Escherichia coli, Pseudomonas aeruginosa and Proteus 
vulgaris) bacterial strains using well diffusion method. The K2 sample shows higher antibacterial effect when compared to 
K1, K3 and K4 samples. In vitro cytotoxicity effect was analysed for A498 (human kidney carcinoma) cell line and normal 
vero (African monkey kidney) cell lines.
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1  Introduction

Recently, rare earth metal (REM) ions doped semiconduc-
tor NPs are used in various fields such as optical, electronic 
and magnetic devices [1–6]. Since, ZnO NPs exhibit unique 
characteristics like low cost, nontoxicity, eco-friendly sys-
tem to the nature and easy to prepare compounds with 
various morphologies having different properties. How-
ever, ZnO NPs is an n-type semiconductor with wide direct 
band gap (3.37 eV) and large excitation binding energy 
(60 meV) at room temperature.

Nano sized ZnO can be potentially important with 
numerous applications such as solar cells [7], gas sensors 
[8], photocatalytic, antibacterial, electrical and optical 

devices [9], electrostatic dissipative coatings [10], deg-
radation of environmental pollutants [11, 12] and exter-
nal uses as antibacterial agents in lotions, mouthwashes, 
ointments and surface coatings to prevent microbial 
growth [13]. The REM-doped ZnO NPs are vibrant mate-
rials for flat panel displays for efficient emission in the 
visible range. On other hand, ZnO NPs is one of the envi-
ronmental friendly materials. The REM-doped ZnO NPs 
may be used as florescence labels for biological medical 
imaging [14].

Chemically synthesized nanoparticles by-products are 
toxic to the environment [15]. Among this, to avoid the 
toxic by-products green synthesis using the bio-materi-
als such as microorganisms and plants or plant extracts 
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derived metal oxide nanoparticles can be an effective 
alternative method for chemical synthesis. Various bio-
logical sources are used for green synthesis like plant [16], 
bacteria [17], fungi [18] and yeast [19].

Among them G. sylvestre belongs to Asclepiadaceae 
family group, which is potentially used for treatment of 
asthma, eye complaints and snake bites [20]. This leaves 
extract holds a large number of bioactive compounds 
such as benzene-1,2-diol, 3-Allyl-2-methoxyphenol, 
hexadecanoic acid, octa decanoic acid [21], saponins 
(Gymnemic acid) and tannins [22]. Vijaya Kumar et al. 
have reported that Gymnemic acid has been a good 
reducing agent to prepare the metal oxide nanoparti-
cles [23].

The metal oxide nanomaterials have been potentially 
used in biomedical applications, which may be due to 
the high surface area of metal oxide NPs. It has consid-
erably enhanced its ability to produce reactive oxygen 
species (ROS) [24, 25]. ROS production may be effected 
by various paths such as irradiance of nanomaterials by 
ultraviolet (UV) light, disturbance of intracellular meta-
bolic activities, and antioxidant system. This results in 
the generation of oxidative stress in the cells. ROS can 
cause cell death in the DNA, cell membrane, and pro-
teins [26, 27].

In the present investigation, pure and REM ions (La3+, 
Ce3+, and Nd3+) doped ZnO NPs were synthesized by 
green method using G. sylvestre leaves extract. The 

structural, optical, antibacterial and anticancer properties 
of the pure and REM-doped ZnO NPs have been studied 
in this work.

2 � Experimental methods

2.1 � Synthesis of pure and REM doped ZnO NPs 
by using G. sylvestre leaves extracts

Gymnema sylvestre leaves was taken and washed several 
time with tap and double distilled water. After that 15 g of 
leaves was taken in 150 ml of deionized water in a beaker 
and boiled at 80 °C for 1 h. The prepared leaves extract was 
filtered using Whatman-1 filter paper.

In the case of ZnO NPs, 0.1 M Zn(NO3)2·6H2O solution 
was dissolved into 150 ml of G. sylvestre leaves extract. 
Homogenously mixed nitrate solution was continuously 
stirred at 80 °C for 6 h. An yellow colour precipitate was 
obtained. Further the precipitate was dried at 120 °C for 
2 h. The obtained ZnO nanopowder were annealed at 
700 °C for 5 h and stored in an airtight container.

Similarly, for La-doped ZnO sample, 0.002  M 
La(NO3)3·6H2O was added into 0.098  M Zn(NO3)2·6H2O 
and dissolved in 150 ml of G. sylvestre leaves extract and 
the above homogeneously mixed solution was stirred 
constantly at 80 °C for 6 h. The yellow colour precipitate 
obtained, was dried at 120 °C for 2 h, to get La doped ZnO 

Fig. 1   Schematic diagram for the formation of K1, K2, K3 and K4 samples
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2.2 � Antibacterial assay

The antibacterial activity of the K1, K2, K3 and K4 sam-
ples was studied against gram positive G+ (Staphylo-
coccus aureus and Streptococcus pneumoniae) and gram 
negative G− (Klebsiella pneumoniae, Shigella dysenteriae, 
Escherichia coli, Pseudomonas aeruginosa and Proteus vul-
garis) bacterial strains using well diffusion method. Petri 
plates were prepared with 25 ml of sterile Muller Hin-
ton agar (MHA, Himedia) and each bacterial pathogen 
was individually swabbed on MHA in separate plates. 
The antibacterial activity was tested at a concentra-
tion of 1.5 mg/ml with the required quantity of the NPs 
dispersed in dimethyl sulphoxide (DMSO). The zone of 
inhibition levels (mm) were measured after 24 h and 
before this step, it was incubated overnight at 37 °C. The 
standard antibiotic Amoxicillin was used as the positive 
control.

2.3 � Cell culture

A498 (kidney carcinoma cell) and Vero (African monkey 
kidney cell) cell line were cultured in liquid medium DMEM 
(Dulbecco’s modified eagle’s medium) supplemented 10% 
Fetal Bovine Serum (FBS), 100 µg/ml penicillin and 100 µg/
ml streptomycin, and maintained under an atmosphere of 
5% CO2 at 37 °C.

2.4 � MTT assay

The K1, K2, K3 and K4 samples were tested for in vitro cyto-
toxicity, using A498 and Vero cells by 3-(4,5-dimethylth-
iazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay 
[28]. The synthesized K1, K2, K3 and K4 samples were sus-
pended with sterile phosphate buffer (PBS) and treated 
with various concentrations 10–100 µg/ml in a serum free 
DMEM medium to treat the chosen cell line A498 and Vero 
cell. Each sample was replicated three times and the cells 
were incubated at 37 °C at 24 h and each well, 20 μl of 
5 mg/ml MTT in phosphate buffer (PBS) was added. The 

absorbance for each well was measured at 570 nm using 
a micro plate reader (Thermo Fisher Scientific, USA) and 
the percent K1, K2, K3 and K4 samples cell viability and 
IC50 value was calculated using GraphPad Prism 6.0 soft-
ware (USA). The data were collected for three replicates. 
The percentage of inhibition was calculated from this data 
using the formula

% of inhibition =
mean OD of untreated cells (control) −mean OD of treated cells

mean OD of untreated cells (control)
× 100.

nanopowder. The obtained nanopowder was annealed at 
700 °C for 5 h. The above procedure was followed for the 
preparation of the Ce, and Nd doped ZnO samples. Thus, 
ZnO (K1), La doped ZnO (K2), Ce doped ZnO (K3) and Nd 
doped ZnO (K4) samples were obtained. Figure 1 shows the 
schematic diagram of synthesized K1, K2, K3 and K4 samples.

2.5 � Characterization studies

The K1, K2, K3 and K4 samples were analysed by X-ray 
diffractometer (model: X’PERT PRO PANalytical). The 
morphological features of the sample were measured 
by Field emission scanning electron microscopy (Model: 
Carl Zess 55) with EDAX (Ultra 55). The FT-IR spectrum was 
recorded in the range of 400–4000 cm−1 by using Perkin-
Elmer spectrometer. Ultraviolet–visible spectra of the 
sample was measured on a Perkin-Elmer UV-Lambda 25 
spectrophotometer (Perkin-Elmer, Norwalk, Connecticut). 
The PL emission study of the sample was carried out using 
Horiba Jobin–YVON spectrofluorometer (model: FLUORO-
MAX-4, 450 W high pressure Xenon lamp as the excitation 
source, photomultiplier at a range 325–550 nm). The XPS 
measurements were performed with an XPS instrument 
(Carl Zeiss) under-high vacuum with Al Kα excitation at 
250 W. To obtain information on defects and vacancies, 
EPR was recorded using X-band JEOL JES-RE1X at the room 
temperature.

3 � Results and discussion

3.1 � X‑ray diffraction studies

Figure 2 shows the XRD patterns of the K1, K2, K3 and K4 
samples using G. sylvestre leaves extract. The XRD peaks 
position are located at (100), (002), (101), (102), (110), (103), 
(112), (201), (004) and (202) for ZnO NPs, retained hexago-
nal wurtzite structure of ZnO NPs with the p63mc space 
group corresponding to JCPDS data (Card No. 36-1451). In 
the case of REM doped ZnO NPs, there is no impurity phase 
observed in La3+ and Nd3+ samples. Furthermore, the ZnO 
doped with Ce NPs have one additional peak observed 
corresponding to 2θ = 28.573 (JCPDS No 34-0394). This is 
due to the partial oxidation of Ce3+ into Ce4+, through the 
formation of CeO2. The XRD parameters like lattice con-
stant, atomic peaks factor c/a, Cos(φ), position parameter 
(u) and bond length (L) estimated through the literature 
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[29] and the values are given in the Table 1. The small shift 
is observed for the REM doped ZnO NPs compared to the 
pure ZnO NPs.

The crystallite size (D) of pure ZnO NPs is determined 
by the X-ray line broadening method using the Scherrer’s 
equation,

(1)D =
k�

�Dcos�

where D is the size in nanometers, λ is the wavelength of 
radiation (1.5406 Å for CuKα), k is a constant (0.94), βD-
is the peak width at half-maximum intensity and θ is the 
peak position.

The average crystalline size observed at 38, 33, 27 and 
23 nm correspond to K1, K2, K3 and K4 samples respec-
tively. The REM doped ZnO NPs possess decreased size 
than the pure ZnO NPs, which may be due to alteration 
in the host ZnO matrix through the foreign impurities i.e., 
La3+, Ce3+, and Nd3+.

3.2 � Morphology and elemental composition studies

Figure 3a–d shows the FESEM images for K1, K2, K3 and 
K4 samples. From the FESEM images, the K1, K2, K3 and 
K4 samples form a spherical, spindle, hexagonal and 
flake like nanostructures. The average particles size were 
observed at 138 nm, 52 nm, 59 nm, and 63 nm for K1, K2, 
K3 and K4 samples respectively. The average thicknesses 
was reduced for REM ions doped ZnO as compared to the 
pure ZnO NPs respectively. The reduction in thickness is 
attributed to the distortion in the ZnO matrix incorpo-
rated with rare earth metal ions like La3+, Ce3+, and Nd3+. 
These doping materials are of different ionic radii such as 
La3+(1.061 Å), Ce3+(1.034 Å) and Nd3+(0.995 Å) and hence, 
the substitution of the REM with ZnO matrix obviously 
changes the morphology of the REM doped ZnO nano-
particles namely K1, K2, K3 and K4 samples [29].

The chemical composition of K1, K2, K3 and K4 samples 
are shown in Fig. 3e–h. In the case of doping samples K2, 
K3 and K4, the atomic percentage of La, Ce, and Nd are 
estimated as 11.90%, 7.18%, and 9.98% respectively. For 
K1 sample atomic percentage of Zn and O are observed at 
83.90% and 16.10% respectively. For REM ions (La3+, Ce3+, 
and Nd3+)-doped ZnO NPs, zinc percentage increases 
whereas oxygen percentage decreases as compare to the 
pure ZnO NPs. The chemical composition values are given 
in the Table 2.
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Fig. 2   X-ray powder diffraction patterns of K1, K2, K3 and K4 sam-
ples

Table 1   X-ray diffraction parameter values of the K1, K2, K3 and K4 samples

Samples Lattice parameter 
values (nm)

Atomic packing 
factor (c/a)

Volume (V) (Å)3 Cos φ Position 
parameter (u)

Bond length 
(Zn–O) L (Å)

Average crystal-
lite size D (nm)

a c

K1 0.3255 0.5215 1.6017 47.876 0.9459 0.3798 1.5569 38
K2 0.3251 0.5209 1.6025 47.689 0.9578 0.3798 1.5555 33
K3 0.3258 0.5217 1.6011 47.988 0.9465 0.3800 1.5579 27
K4 0.3251 0.5214 1.6039 47.733 0.9464 0.3799 1.5551 23
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3.3 � Fourier transform infra‑red (FT‑IR) spectroscopic 
studies

Figure 4 shows FT-IR spectra of K1, K2, K3 and K4 samples. 
In the present investigation, wide O–H stretching band 
has been observed at 3420 cm−1 for K1 sample, which 
may be surface absorbed water molecule [30]. The asym-
metric C–H stretching band is located at 2978 cm−1 for 
K1 sample. The narrow intense H–O–H bending centred 

Fig. 3   Morphology of a–d K1, K2, K3 and K4 samples and elemental composition of e–h K1, K2, K3 and K4 samples

Table 2   The elemental composition of the synthesized K1, K2, K3 
and K4 samples

Samples at%

Zn O Doping amount Total (%)

K1 83.90 16.10 – 100
K2 76.92 11.17 11.90 (La) 100
K3 76.29 16.52 7.18 (Ce) 100
K4 71.05 18.97 9.98 (Nd) 100



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:355 | https://doi.org/10.1007/s42452-019-0375-x

at 1571 cm−1. The medium intensity band 1424 cm−1 is 
attributed to C=O symmetric stretching. The O–H asym-
metric stretching bands found to be 1044 and 1014 cm−1 
for K1 sample. The weak Metal–Oxygen (Zn–O) vibra-
tion frequencies are observed at 878 and 817 cm−1 for 

K1 sample. The medium intense peak at 467 cm−1 was 
recognized as the Zn–O stretching band. The REM doped 
ZnO NPs vibration frequencies small shift occur as com-
pared to pure ZnO NPs. The metal–oxygen (Zn–O) vibra-
tion frequency (467–461  cm−1) (467–452  cm−1) and 
(467–439 cm−1) for K2, K3, and K4 samples respectively, 
due to the REM La3+, Ce3+ and Nd3+ ions substitution in 
the ZnO matrix.

3.4 � UV–Vis spectroscopic studies

UV–Visible spectra of K1, K2, K3 and K4 samples are 
shown in Fig. 5. 3 mg of pure and doped samples were 
uniformly dispersed in distilled water and the solution 
was ultra sonificated for 20 min before recording UV–Vis 
absorbance spectra. The K1, K2, K3 and K4 samples exhib-
ited strong absorption edge peaks at 378, 377, 376, and 
374 nm respectively. The REM doped ZnO NPs are blue 
shifted when compared to pure ZnO NPs, which may be 
due to the doping induced effects. The band gap energy 
are calculated using Tauc relation [31]. A plot (Fig.  6) 
between (αhυ)2 and photon energy (eV) is drawn for K1, 
K2, K3 and K4 samples. The optical band gap of K1, K2, K3 
and K4 samples are observed at 2.2, 1.8, 2.1 and 2.0 eV 
respectively. The K1, K2, K3 and K4 samples band gap 
results are compared with commercially available TiO2 
(for 3.1 eV) and ZnO (for 3.37 eV) [32]. The green synthe-
sized K2 sample band gap energy (for 1.8 eV) is lower than 
the commercially available TiO2 and ZnO NPs. This result 
showed that K2 sample can be more effectively used as 
photocatalyst.

3.5 � Photoluminescence (PL) studies

Figure 7 shows the photoluminescence spectra of K1, 
K2, K3 and K4 samples using an excitation wavelength 
of 325 nm. In the case of K1 sample, the emission wave-
lengths are observed at 421, 451, 465, 489 and 516 nm 
respectively. The violet emission centered at 421 nm is 
ascribed to an electron transition from a shallow donor 
level of the natural zinc interstitials to the top level of 
the valence band [33]. The two blue emissions located at 
451 and 465 nm are due to the singly ionized Zn vacan-
cies [34]. The blue green emission observed at 489 nm is 
ascribed to the transition between the oxygen vacancy 
and interstitial oxygen [35]. Finally green emission 
observed at 516 nm, corresponds to the singly ionized 
oxygen [36, 37].

The PL emission band values for K1, K2, K3 and K4 NPs 
are given in Table 3. Green emission band disappear for K4 
sample as compared to K1 sample, due to the distortion 
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Fig. 4   FTIR spectrum of K1, K2, K3 and K4 samples
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in the host ZnO lattice by the REM ion impurities. How-
ever for the K2 sample, green emission values (522 nm) 
increased as compared to the K1 (516 nm) and K3 (510 nm) 
samples respectively. These changes in emissions, confirm 
that REM (La3+, Ce3+ and Nd3+) ions incorporate with ZnO 
matrix.

3.6 � XPS studies

XPS spectra of K1, K2, K3 and K4 samples are shown in 
Fig. 8. The Zn (2p), O (1s), La (3d), Ce (3d) and Nd (3d) 
oxidation states were identified using XPS spectra. The 
Zn (2p) singlet split in two doublets, such as Zn 2p1/2 and 
Zn 2p3/2 observed at 1045.327 and 1022.214 eV respec-
tively, which is attributed to the ZnO matrix for the K1 
sample had Zn2+ being bound to oxygen [29]. The K3 and 
K4 samples binding energy values are increased. In the 
case of K2 sample binding energy values are decreased, 

due to the ions residing partially in the tetrahedral Zn 
positions [29].

Figure 9 shows the O (1s) spectra of K1, K2, K3 and 
K4 samples. The green synthesized K1 sample of O (1s) 
signal observed at 531.115, 532.710 and 533.821 eV 
respectively. The lower binding energy O (1s) sig-
nal centre at 531.115  eV, which may be O2

− ion in 
the wurtzite. The middle and higher binding energy 
located at 532.710 and 533.821 eV are attributed to the 
loosely-bound oxygen, like absorbed O2 or adsorbed 
H2O on the ZnO surface. The REM doped ZnO NPs bind-
ing energy of O (1s) values are observed as positional 
shift which is not observed in the case of K1 sample. 
This alteration may be charge due to the transfer effi-
ciency from Zn2+ to O2

− ions. These results strongly 
affected surface defects and vacancies, leading to 
increasing the charge-transferring efficiency in the 
metal ions.

Fig. 6   Tauc plots of (αhυ)2 
versus photon energy used to 
estimate optical band gap of 
K1, K2, K3 and K4 samples
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The 3d spectra for K2, K3 and K4 samples are shown 
in Fig. 10a–c. The La (3d) signal split into La 3d5/2 and 
La 3d3/2 observed at (836.42 and 839.92 eV) and (853.34 
and 856.35 eV) for K2 sample respectively [38]. The Ce 
(3d) signal is divided into Ce 3d3/2 and Ce 3d5/2 state 

located at 906.40 and 879.34 eV for K3 sample respec-
tively. The signals for Nd (3d) are found at 976.28, 
982.35, 992.11 and 1003.01 eV for K4 sample. It can be 
seen that La3+, Ce3+ and Nd3+ ion substitution in ZnO 
matrix, not only changes the atomic arrangement but 
also gradually tunes their electronic structures.

3.7 � Antibacterial activity

The antibacterial activities of green synthesized ZnO (K1), 
La doped ZnO (K2), Ce doped ZnO (K3) and Nd doped 
ZnO (K4) NPs are treated with concentration 1.5 mg/ml 
and it is shown in Fig. 11. Day by day, more number of 
researchers are focused to study antibacterial activity of 
ZnO and doped ZnO NPs. But their doped concentration 
and their antibacterial results are varied. So, currently we 
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Fig. 7   PL emissions spectra of K1, K2, K3 and K4 samples using the excitation wavelength at 325 nm

Table 3   Gaussian decomposed photoluminescence emission val-
ues of K1, K2, K3 and K4 samples

K1 (nm) K2 (nm) K3 (nm) K4 (nm)

421 420 420 366
451 451 450 395
465 466 464 408
489 490 485 429
516 522 510 466
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focused on the enhanced antibacterial activity of ZnO 
NPs. From this study, the K2 sample shows more antibac-
terial effect than K1, K3 and K4 samples. Table 4 shows 
a comparison between present and reported concentra-
tion values of various metals doped ZnO NPs required to 
inhibit the growth of human pathogens [31, 39–43]. The 
zone of inhibition (ZOI) of human pathogens is shown in 
Fig. 12. The photo-generation of ZnO NP’s reactive oxygen 
species (ROS) are accountable for various factors such as 
surface area, oxygen vacancies, and Zn2+ ions release [43]. 
The K1, K2, K3 and K4 NPs exhibits antibacterial activity 
as shown in Fig. 12. However, the K2 sample shows the 
highest antibacterial activity. In early report, the appropri-
ate crystallite size (ca. 33 nm) caused higher antibacterial 
effects [29, 44]. From XRD results the particles size of the 
NPs are found to be 38, 33, 27 and 23 nm for K1, K2, K3 and 
K4 samples respectively. The K2 sample exhibits 33 nm for 
crystallite size, is ascribed to higher antibacterial activity. 
From the antibacterial activity, the NPs with uneven sur-
faces and rough edges have been found to adhere to the 

bacterial wall and cause damage to the cell membrane 
[29]. From the FESEM image, it clear shows different mor-
phologies like spherical, spindle, hexagonal and flake 
structures for K1, K2, K3 and K4 samples respectively. La-
doped ZnO NPs [K2] have uneven ridges at their outer sur-
face which led to antibacterial activity, whereas the other 
NPs have smooth surfaces, which indicates that antibac-
terial activity is effective in uneven ridged surfaces. The 
EPR spectra provides information about the native defects 
in K1, K2, K3 and K4 samples as shown in Fig. 13. In early 
literatures, [28, 45, 46] the ZnO NPs (K1) higher intensity of 
the signal are associated with more oxygen vacancies (Vo) 
in it. Therefore, according to Fig. 13, the higher intensity 
are observed for K1, K3 and K4 samples as compared to 
K2 samples. This result shows that the amount of oxygen 
vacancies in the K2 sample is more than that in the K1 
sample. From antibacterial test, we conclude that K2 sam-
ple render an effective antibacterial agent as compared 
to the K1, K3 and K4 samples. Based on the comparative 
statement, the present study confirmed that the pure and 
doped ZnO NPs exhibit moderate antibacterial activities 
respectively. It is worth to mention that all the samples 
exhibit strong antibacterial activity towards both G+ and 
G− bacterial culture.

3.8 � In vitro toxicity studies on normal vero cell 
versus kidney cancer cell line

The ZnO NPs is a wide band-gap semiconductor and 
photo excitation under the UV lights, whose energy has 
greater than the band gap energy [47]. The photo excita-
tion of ZnO initiates electron transfer from the valence 
band to the conduction band, its creating an elec-
tron–hole pair. In general, the holes in the valence band 
act as oxidants and thus generate hydroxyl radicals ( ⋅OH ) 
upon reaction with water. The electrons in the conduc-
tion band reduce oxygen to produce superoxide anions 
( O⋅−

2
 ) [47]. Reactive oxygen species (ROS) generation by 

ZnO NPs upon irradiation with UV light has been utilized 
for photo-triggered anticancer activities via ROS-induced 
damage the cell membranes, mitochondria, proteins, and 
DNA [48–51].

The cytotoxicity of the K1, K2, K3 and K4 samples 
were tested at various concentration 10–100 µg/ml for 
A498 (Kidney carcinoma cell) and Vero (African green 
monkey kidney cell) cell lines. The IC50 value of (41.74, 
35.86, 40.05 and 63.08 μg/ml) and (55.27, 49.69, 56.83 
and 51.10 μg/ml) (evaluated after 24 h) of K1, K2, K3 and 
K4 samples against A498 and Vero cells was (p ≤ 0.05 
p < 0.01). The La-doped ZnO (K2) sample showed a highly 
effective cytotoxic activity against A498 and Vero cells 
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Fig. 8   XPS spectra of Zn (2p) for K1, K2, K3 and K4 samples
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(Fig. 14a, b). Table 5 shows a comparison between our 
and earlier reported IC50 values of ZnO NPs [42, 52–58]. 
Cell morphological changes were observed for light 
microscope with different concentrations 10, 50 and 
100 μg/ml (Fig. 15).  

As per the early discussion, the cytotoxicity effect 
of ZnO NPs potentially depends on the attendance of 
higher ROS, ZnO induced a reduced band gap due to 

the increased redox capability. The enhancement in 
the anticancer activity in La doped ZnO NPs is due to 
the increased production of the reactive oxygen spe-
cies (ROS) in the presence of La3+ ions and ZnO in the 
presence of UV light [59]. However, La doped ZnO (K2) 
sample, show enhanced ability to produce photo gen-
erated holes (h+), resulting in stronger anticancer effect 
than ZnO (K1) sample Fig. 16. Reactive oxygen species 

Fig. 9   XPS spectra of O (1s) for 
K1, K2, K3 and K4 samples
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(ROS), such as hydrogen peroxide (H2O2), superoxide 
anion ( O⋅−

2
 ), hydroxyl radicals ( ⋅OH ), and organic hydro 

peroxides (OHPs) are toxic to the cells as they damage 
cellular constituents such as DNA, lipids, and proteins 
and also lanthanum ions interact with thiol groups in 
proteins, ensuing in inactivation of respiratory enzymes 
and leading to the production of more reactive oxygen 
species (ROS) Fig. 17.

4 � Conclusion

ZnO NPs (K1) and rare earth metal (REM) ions (La3+, Ce3+ 
and Nd3+) doped ZnO NPs were prepared through green 
method using Gymnema sylvestre leaves extract. Syn-
thesized K1 (ZnO NPs), K2 (La doped ZnO NPs), K3 (Ce 
doped ZnO NPs) and K4 (Nd doped ZnO NPs) samples 
exhibit hexagonal wurtzite structure. Elemental oxidation 
state of Zn (2p), O (1s), La (3d), Ce (3d) and Nd (3d) were 
observed using XPS spectra. Morphological and elemental 

Fig. 10   XPS spectra of 3d for 
K2, K3, and K4 samples
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composition were identified for the synthesized K1, K2, K3 
and K4 samples using FESEM and EDAX spectra. Optical 
properties were estimated through UV–Vis and PL spec-
tra. From the antibacterial activity, tested against clinical 

pathogen using K1, K2, K3 and K4 samples. The K2 samples 
exhibits highest antibacterial effects as compared to other 
K1, K3 and K4 samples.

Fig. 11   The progress of antibacterial activity of K1, K2, K3 and K4 samples

Table 4   Comparative 
antibacterial values of present 
and various metals doped 
ZnO NPs on different bacterial 
strains

S.no Concentration Materials Size (nm) Bacteria

Present study
 1. 1.5 mg/ml 0.002% of La in ZnO 33 Staphylococcus aureus

Streptococcus pneumoniae
Escherichia coli
Klebsiella pneumoniae
Pseudomonas aeruginosa

 2 0.002% of Ce in ZnO 27
 3 0.002% of Nd in ZnO 23

Previous studies
 1 100 (μl) 0.03% of La in ZnO [39] 11.46 Staphylococcus aureus
 2 1 (mg/ml) 0.01% of La in ZnO [40] 38 Staphylococcus aureus

Streptococcus pneumoniae
 3 10 (μg/ml) 0.03% of Ce in ZnO [41] 11.56 Staphylococcus aureus
 4 1 (mg/ml) 0.05% Of Ce In ZnO [42] 32 Staphylococcus aureus

Streptococcus pneumoniae
 5 800 (μg/ml) 0.003% of Nd in ZnO [43] 33 Escherichia coli, Klebsiella pneumoniae
 6 2 (mg/ml) 0.03% of Nd doped in ZnO [31] 35.2 Pseudomonas aeruginosa
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In vitro cytotoxicity effect were observed for A498 
(human kidney carcinoma cell) and Vero (monkey kid-
ney cell) lines. From practical therapeutic application, 
significant improvements are required to reduce the 
IC50 and to improve the cell specificity. The IC50 val-
ues obtained are (41.74, 35.86, 40.05 and 63.08 μg/
ml) and (55.27, 49.69, 56.83 and 51.10 μg/ml) for K1, 
K2, K3 and K4 samples against A498 and Vero cells 
line. Minimum toxicity percentage was observed for 
synthesized all K1, K2, K3 and K4 samples using Vero 
cells. To traverse new strategies to develop the next 
generation of drugs or agents to control bacterial 
infections and cytotoxic effects the antibacterial and 
anticancer properties of ZnO and REM-doped ZnO NPs 
were examined.

Fig. 12   The zone of inhibi-
tion formed around each disc, 
loaded with test samples indi-
cated the antibacterial activity 
of a S. aureus, b S. pneumoniae 
c E. coli d P. aeruginosa e P. 
vulgaris f K. pneumoniae and g 
S. sydenteriae for the K1, K2, K3 
and K4 samples
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Fig. 13   EPR spectra of K1, K2, K3 and K4 samples
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Fig. 14   a Effect of K1, K2, 
K3 and K4 samples on the 
cytotoxicity property in human 
A498 cell (Kidney carcinoma 
cell). b Effect of K1, K2, K3 and 
K4 samples on the cytotoxicity 
property in Vero cell (African 
green monkey kidney cell)
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Table 5   Comparative IC50 values of present and various metals doped ZnO NPs on cytotoxic response between the different cell types

Sample IC50 concentration Cell line References

ZnO and La, Ce and Nd 
doped ZnO NPs (Present 
study)

41.74, 35.86, 40.05 and 63.08 μg/ml Vero cells Present study
55.27, 49.69, 56.83 and 51.10 μg/ml Kidney carcinoma cell

ZnO-2 and ZnO-4 41.85 μg/ml and 137.6 μg/ml HeLa cell lines [52]
ZnO 280 μg/ml Human lung cancer cell line 

(A549)
[42]

Zn0.95 Ce0.05 O 82 μg/ml
Zn0.90 Ce0.10 O 68 μg/ml
Zn0.85 Ce0.15 O 76 μg/ml
ZnO 121 μg/ml MCF-7 Breast cancer cell line [53]
ZnO 52.80 μg/ml Human myeloblasic leukemia 

cell HL 60
[54]

ZnO 100 μg/ml Human breast cancer MCF-7 [55]
ZnO 42.60 μg/ml Human liver adenocarcinoma 

cell HepG2
[56]

Fe-doped ZnO 37.20 μg/ml
Ag-doped ZnO 45.10 μg/ml
Pd-doped ZnO 77.20 μg/ml
Co-doped ZnO 56.50 μg/ml
Doxorubicin 20.10 μg/ml
ZnO U87 HeLa HEK Human cerebral glioma 

tumor U87
[57]

ZnO micro-flower composed 
of nanorods

61.6 μg/ml 118 μg/ml 52.80 μg/ml

125 μg/ml 128 μg/ml 250 μg/ml Cervical cancer HeLa
ZnO micro-flower composed 

of thin sheets
31.26 μg/ml 126 μg/ml 125 μg/ml

ZnO microspheres composed 
of nanoparticles

30 μg/ml 61 μg/ml 62.5 μg/ml Normal HEK cells

Silver Zinc oxide (Ag:ZnO) 20 μg/ml (MCF-7) Human breast cancer (MCF-7) [58]
550 μg/ml (A549) Human lung cancer (A549)

Silver-zinc oxide nanocom-
posite (CD-Ag:ZnO NC)

50 μg/ml (MCF-7)
70 μg/ml (A549)
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Fig. 15   Kidney carcinoma cell 
(A498) and vero cells treated 
with K1, K2, K3 and K4 samples 
at the respective different 
concentration
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Fig. 16   The mechanism of the generation of reactive oxygen species from ZnO (K1) and La doped ZnO NPs (K2) induced by UV light

Fig. 17   Possible mechanisms underlying the cytotoxic activities leading to the cell death as caused by La doped ZnO NPs (K2)
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