Skip to main content
Log in

S1-Leitlinie: Diagnostik und Therapie HIV-1-assoziierter neurologischer Erkrankungen

Leitlinie der Deutschen Gesellschaft für Neurologie

S1 guideline: diagnosis and treatment of HIV-1-associated neurological disorders

Guideline of the German Neurological Society

  • Leitlinie
  • Published:
DGNeurologie Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

AIDP:

Akute inflammatorische demyelinisierende Polyradikuloneuropathie

ANPD:

Asymptomatisches, HIV-assoziiertes neuropsychologisches Defizit

cART:

Kombinierte antiretrovirale Therapie

CIDP:

Chronisch inflammatorische demyelinisierende Polyradikuloneuropathie

CK:

Kreatinkinase

CMV:

Zytomegalievirus

CPE:

ZNS-Penetrationseffektivitätsscore

CT:

Computertomographie

DAIG:

Deutsche AIDS-Gesellschaft

DGNANI:

Deutsche Gesellschaft für Neuro-AIDS und Neuro-Infektiologie e. V.

DILS:

Diffus infiltratives Lymphozytosesyndrom

EACS:

„European AIDS Clinical Society“

EBV:

Epstein-Barr-Virus

FDG:

F‑Fluordesoxyglukose

GBS:

Guillain-Barré-Syndrom

HAD:

HIV-1-assoziierte Demenz

HAND:

HIV-assoziiertes neurokognitives Defizit

HIV-ATN:

Antiretrovirale toxische Neuropathie

HIV-DSP:

HIV-assoziierte distal symmetrische Polyneuropathie

HIVM:

HIV-1-assoziierte Myelopathie

HSV:

Herpes-simplex-Virus

HTLV‑1:

Humanes T‑lymphotropes Virus 1

IBM:

Einschlusskörpermyositis

INI:

Integraseinhibitoren

IRIS:

Immunrekonstitutionsphänomen

MNCD:

Mildes HIV-assoziiertes neurokognitives Defizit

MoCA:

„Montreal cognitive assessment“

MRT:

Magnetresonanztomographie

nanoART:

Nanoformulierte antiretrovirale Therapie

NNRTI:

Nichtnukleosidanaloge-Reverse-Transkriptase-Hemmer

NRTI:

Nukleosidanaloge-Reverse-Transkriptase-Inhibitoren

NSAID:

„Non-steroidal anti-inflammatory drug“ (nichtsteroidales Antirheumatikum)

OI:

Opportunistische Infektion

PAI:

Post-Attachment-Inhibitoren

PCR:

Polymerasekettenreaktion

PET-CT:

Positronenemissionstomographie-Computertomographie

PI:

Proteasehemmer

PML:

Progressive multifokale Leukenzephalopathie

PNP:

Polyneuropathie

PNS:

Peripheres Nervensystem

RF:

Risikofaktoren

SEP:

Somatosensibel evozierte Potenziale

TPHA:

Treponema-pallidum-Hämagglutination-Assay

TPPA:

Treponema-pallidum-Partikel-Agglutination

VDRL:

„Venereal disease research laboratory“

VEP:

Visuell evozierte Potenziale

VZV:

Varizella-Zoster-Virus

ZNS:

Zentrales Nervensystem

Literatur

  1. Omeragic A et al (2020) Potential pharmacological approaches for the treatment of HIV‑1 associated neurocognitive disorders. Fluids Barriers CNS 17(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dash PK et al (2020) Pathways towards human immunodeficiency virus elimination. EBioMedicine 53:102667

    Article  PubMed  PubMed Central  Google Scholar 

  3. Eggers C et al (2017) HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol 264(8):1715–1727

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eggers C et al (2003) Delayed central nervous system virus suppression during highly active antiretroviral therapy is associated with HIV encephalopathy, but not with viral drug resistance or poor central nervous system drug penetration. AIDS 17(13):1897–1906

    Article  PubMed  Google Scholar 

  5. Valcour VG et al (2007) Neuropsychological abnormalities in patients with dementia in CRF 01_AE HIV‑1 infection. Neurology 68(7):525–527

    Article  CAS  PubMed  Google Scholar 

  6. Wright EJ et al (2018) Global developments in HIV neurology. Handb Clin Neurol 152:265–287

    Article  PubMed  Google Scholar 

  7. Morgello S (2018) HIV neuropathology. Handb Clin Neurol 152:3–19

    Article  PubMed  Google Scholar 

  8. Valcour V et al (2012) Central nervous system viral invasion and inflammation during acute HIV infection. The Journal of Infectious Diseases 206(2):275–282. https://doi.org/10.1093/infdis/jis326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spudich S et al (2019) Potential for early antiretroviral therapy to reduce central nervous system HIV‑1 persistence. AIDS 33(Suppl 2):S135–S144

    Article  CAS  PubMed  Google Scholar 

  10. Hellmuth J et al (2016) Neurologic signs and symptoms frequently manifest in acute HIV infection. Neurology 87(2):148–154

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sturdevant CB et al (2015) Compartmentalized replication of R5 T cell-tropic HIV‑1 in the central nervous system early in the course of infection. PLoS Pathog 11(3):e1004720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sillman B et al (2018) Neuropathogenesis of human immunodeficiency virus infection. Handb Clin Neurol 152:21–40

    Article  PubMed  Google Scholar 

  13. Brew BJ, Barnes SL (2019) The impact of HIV central nervous system persistence on pathogenesis. AIDS 33(Suppl 2):S113–S121

    Article  PubMed  Google Scholar 

  14. Gelman BB, Endsley J, Kolson D (2018) When do models of NeuroAIDS faithfully imitate “the real thing”? J Neurovirology 24(2):146–155

    Article  Google Scholar 

  15. Kahn JO, Walker BD (1998) Acute human immunodeficiency virus type 1 infection. N Engl J Med 339(1):33–39

    Article  CAS  PubMed  Google Scholar 

  16. Saylor D et al (2016) HIV-associated neurocognitive disorder—pathogenesis and prospects for treatment. Nat Rev Neurol 12(5):309

    Article  PubMed  PubMed Central  Google Scholar 

  17. Salahuddin M et al (2020) Prevalence and predictors of neurocognitive impairment in Ethiopian population living with HIV. HIV AIDS 12:559–572

    Google Scholar 

  18. Kranick SM, Nath A (2012) Neurologic complications of HIV‑1 infection and its treatment in the era of antiretroviral therapy. Continuum 18(6 Infectious Disease):1319–1337

    PubMed  PubMed Central  Google Scholar 

  19. Antinori A et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799

    Article  CAS  PubMed  Google Scholar 

  20. Ciccarelli N (2020) Considerations on nosology for HIV-associated neurocognitive disorders: it is time to update? Infection 48(1):37–42

    Article  PubMed  Google Scholar 

  21. Sacktor N et al (2016) Prevalence of HIV-associated neurocognitive disorders in the multicenter AIDS Cohort Study. Neurology 86(4):334–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grant I et al (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 82(23):2055–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brew BJ (2001) HIV neurology, 3. Aufl. Oxford University Press, New York

    Google Scholar 

  24. Nightingale S et al (2014) Controversies in HIV-associated neurocognitive disorders. Lancet Neurol 13(11):1139–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smail RC, Brew BJ (2018) HIV-associated neurocognitive disorder. Handb Clin Neurol 152:75–97

    Article  PubMed  Google Scholar 

  26. Power C et al (1995) HIV Dementia Scale: a rapid screening test. J Acquir Immune Defic Syndr Hum Retrovirol 8(3):273–278

    Article  CAS  PubMed  Google Scholar 

  27. Davis HF et al (2002) Assessing HIV-associated dementia: modified HIV dementia scale versus the Grooved Pegboard. AIDS Read 12(1):29–31, 38

    PubMed  Google Scholar 

  28. Smith CA et al (2003) Screening subtle HIV-related cognitive dysfunction: the clinical utility of the HIV dementia scale. J Acquir Immune Defic Syndr 33(1):116–118

    Article  PubMed  Google Scholar 

  29. Skinner S et al (2009) Neurocognitive screening tools in HIV/AIDS: comparative performance among patients exposed to antiretroviral therapy. HIV Med 10(4):246–252

    Article  CAS  PubMed  Google Scholar 

  30. Marin-Webb V et al (2016) Validation of the international HIV dementia scale as a screening tool for HIV-associated neurocognitive disorders in a German-speaking HIV outpatient clinic. PLoS ONE 11(12):e168225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Simioni S et al (2009) Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 24(9):1243–1250

    Article  Google Scholar 

  32. Sakamoto M et al (2013) Concurrent classification accuracy of the HIV dementia scale for HIV-associated neurocognitive disorders in the CHARTER Cohort. J Acquir Immune Defic Syndr 62(1):36–42

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kinai E et al (2017) Association of age and time of disease with HIV-associated neurocognitive disorders: a Japanese nationwide multicenter study. J Neurovirol 23(6):864–874

    Article  PubMed  Google Scholar 

  34. Valcour V et al (2004) Higher frequency of dementia in older HIV‑1 individuals: the Hawaii Aging with HIV‑1 Cohort. Neurology 63(5):822–827

    Article  CAS  PubMed  Google Scholar 

  35. Brew BJ (2016) Has HIV-associated neurocognitive disorders now transformed into vascular cognitive impairment? AIDS 30(15):2379–2380

    Article  PubMed  Google Scholar 

  36. Schuster RM, Gonzalez Substance Abuse R (2012) Hepatitis C, and aging in HIV: common cofactors that contribute to neurobehavioral disturbances. Neurobehav HIV Med 2012(4):15–34

    PubMed  PubMed Central  Google Scholar 

  37. Gonzalez R et al (2011) Impact of HIV and a history of marijuana dependence on procedural learning among individuals with a history of substance dependence. J Clin Exp Neuropsychol 33(7):735–752

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tedaldi EM, Minniti NL, Fischer T (2015) HIV-associated neurocognitive disorders: the relationship of HIV infection with physical and social comorbidities. Biomed Res Int 2015:641913. https://doi.org/10.1155/2015/641913

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arendt G (2005) Neurologische Manifestationen der HIV-Infektion in der Ära der hochaktiven antiretroviralen Therapie (HAART). Fortschr Neurol Psychiatr 73:1–10

    Article  Google Scholar 

  40. Petito CK et al (1986) Neuropathology of acquired immunodeficiency syndrome (AIDS): an autopsy review. J Neuropathol Exp Neurol 45(6):635–646

    Article  CAS  PubMed  Google Scholar 

  41. Hahn K (2020) Neuromuscular complications of HIV infection. Nervenheilkunde 39:533–535

    Google Scholar 

  42. Geraci AP, Simpson DM (2001) Neurological manifestations of HIV‑1 infection in the HAART era. Compr Ther 27(3):232–241

    Article  CAS  PubMed  Google Scholar 

  43. Marra CM, Boutin P, Collier AC (1998) Screening for distal sensory peripheral neuropathy in HIV-infected persons in research and clinical settings. Neurology 51(6):1678–1681

    Article  CAS  PubMed  Google Scholar 

  44. Morgello S et al (2004) HIV-associated distal sensory polyneuropathy in the era of highly active antiretroviral therapy: the Manhattan HIV Brain Bank. Arch Neurol 61(4):546–551

    Article  PubMed  Google Scholar 

  45. Ellis RJ et al (2010) Continued high prevalence and adverse clinical impact of human immunodeficiency virus-associated sensory neuropathy in the era of combination antiretroviral therapy: the CHARTER Study. Arch Neurol 67(5):552–558

    Article  PubMed  PubMed Central  Google Scholar 

  46. Robinson-Papp J et al (2012) Substance abuse increases the risk of neuropathy in an HIV-infected cohort. Muscle Nerve 45(4):471–476

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hahn K et al (2008) Differential effects of HIV infected macrophages on dorsal root ganglia neurons and axons. Exp Neurol 210(1):30–40

    Article  CAS  PubMed  Google Scholar 

  48. Moyle GJ, Sadler M (1998) Peripheral neuropathy with nucleoside antiretrovirals: risk factors, incidence and management. Drug Saf 19(6):481–494

    Article  CAS  PubMed  Google Scholar 

  49. Hahn K, Husstedt IW (2010) HIV-associated neuropathies. Nervenarzt 81(4):409–417

    Article  CAS  PubMed  Google Scholar 

  50. Prior DE, Song N, Cohen JA (2018) Neuromuscular diseases associated with Human Immunodeficiency Virus infection. J Neurol Sci 387:27–36

    Article  CAS  PubMed  Google Scholar 

  51. Ghrenassia E et al (2015) The diffuse infiltrative lymphocytosis syndrome (DILS). A comprehensive review. J Autoimmun 59:19–25

    Article  CAS  PubMed  Google Scholar 

  52. Moulignier A et al (1997) Peripheral neuropathy in human immunodeficiency virus-infected patients with the diffuse infiltrative lymphocytosis syndrome. Ann Neurol 41(4):438–445

    Article  CAS  PubMed  Google Scholar 

  53. Arendt G (2000) Strategien aus Sicht des Neurologen. Ärzteblatt 97(15):A-972–A973

    Google Scholar 

  54. Casademont J et al (1996) The effect of zidovudine on skeletal muscle mtDNA in HIV‑1 infected patients with mild or no muscle dysfunction. Brain 119(Pt 4):1357–1364

    Article  PubMed  Google Scholar 

  55. Authier FJ, Chariot P, Gherardi RK (2005) Skeletal muscle involvement in human immunodeficiency virus (HIV)-infected patients in the era of highly active antiretroviral therapy (HAART). Muscle Nerve 32(3):247–260

    Article  PubMed  Google Scholar 

  56. Hiniker A, Daniels BH, Margeta M (2016) T‑cell-mediated inflammatory Myopathies in HIV-positive individuals: a histologic study of 19 cases. J Neuropathol Exp Neurol 75(3):239–245

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lloyd TE et al (2017) Overlapping features of polymyositis and inclusion body myositis in HIV-infected patients. Neurology 88(15):1454–1460

    Article  PubMed  PubMed Central  Google Scholar 

  58. Uruha A et al (2016) Hepatitis C virus infection in inclusion body myositis: a case-control study. Neurology 86(3):211–217

    Article  CAS  PubMed  Google Scholar 

  59. Silva AMS et al (2017) Clinical, histological and radiological responses to methylprednisolone in HIV-associated rod myopathy. Neuromuscul Disord 27(8):756–759

    Article  PubMed  Google Scholar 

  60. UK Collaborative HIV Cohort (CHIC) Study Steering Committee et al (2011) HIV-associated central nervous system diseases in the recent combination antiretroviral therapy era. Eur J Neurol 18(3):527–534

    Article  Google Scholar 

  61. Tan IL et al (2012) HIV-associated opportunistic infections of the CNS. Lancet Neurol 11(7):605–617

    Article  PubMed  Google Scholar 

  62. Albarillo F, O’Keefe P (2016) Opportunistic neurologic infections in patients with acquired immunodeficiency syndrome (AIDS). Curr Neurol Neurosci Rep 16(1):10

    Article  PubMed  CAS  Google Scholar 

  63. Maschke M (2020) Opportunistic infections in patients with HIV. Nervenheilkunde 39:536–541

    Google Scholar 

  64. Brandsma D, Bromberg JEC (2018) Primary CNS lymphoma in HIV infection. Handb Clin Neurol 152:177–186

    Article  PubMed  Google Scholar 

  65. Arendt G, Maschke M (2018) HIV-Infektionen und AIDS: neurologische Manifestationen. In: Diener HC, Gerloff C, Dieterich M (Hrsg) Therapie und Verlauf neurologischer Erkrankungen. Kohlhammer, Stuttgart, S 655–683

    Google Scholar 

  66. Bowen L, Nath A, Smith B (2018) CNS immune reconstitution inflammatory syndrome. Handb Clin Neurol 152:167–176

    Article  PubMed  Google Scholar 

  67. Shelburne SA et al (2005) Incidence and risk factors for immune reconstitution inflammatory syndrome during highly active antiretroviral therapy. AIDS 19(4):399–406

    Article  PubMed  Google Scholar 

  68. Gray F et al (1996) Neuropathology of early HIV‑1 infection. Brain Pathol 6(1):1–15

    Article  CAS  PubMed  Google Scholar 

  69. Arendt G et al (1992) Improvement of motor performance of HIV-positive patients under AZT therapy. Neurology 42(4):891–896

    Article  CAS  PubMed  Google Scholar 

  70. Cysique LA, Maruff P, Brew BJ (2006) The neuropsychological profile of symptomatic AIDS and ADC patients in the pre-HAART era: a meta-analysis. J Int Neuropsychol Soc 12(3):368–382

    Article  PubMed  Google Scholar 

  71. Heaton RK et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17(1):3–16

    Article  CAS  PubMed  Google Scholar 

  72. Becker JT et al (2011) Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain Imaging Behav 5(2):77–85

    Article  PubMed  PubMed Central  Google Scholar 

  73. Su T et al (2017) Cerebral blood flow and cognitive function in HIV-infected men with sustained suppressed viremia on combination antiretroviral therapy. AIDS 31(6):847–856

    Article  PubMed  Google Scholar 

  74. Young AC et al (2014) Cerebral metabolite changes prior to and after antiretroviral therapy in primary HIV infection. Neurology 83(18):1592–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fernandez-Cruz AL, Fellows LK (2017) The electrophysiology of neuroHIV: A systematic review of EEG and MEG studies in people with HIV infection since the advent of highly-active antiretroviral therapy. Clin Neurophysiol 128(6):965–976

    Article  PubMed  Google Scholar 

  76. Schmidbauer M et al (1992) Morphological spectrum, distribution and clinical correlation of white matter lesions in AIDS brains. Neuropathol Appl Neurobiol 18(5):489–501

    Article  CAS  PubMed  Google Scholar 

  77. Moodley K, Bill PL, Patel VB (2017) A comparative study of CIDP in a cohort of HIV-infected and HIV-uninfected patients. Neurol Neuroimmunol Neuroinflamm 4(2):e315

    Article  PubMed  Google Scholar 

  78. Mochan A, Anderson D, Modi G (2016) CIDP in a HIV endemic population: A prospective case series from Johannesburg, South Africa. J Neurol Sci 363:39–42

    Article  PubMed  Google Scholar 

  79. Evers S et al (2004) Prevention of AIDS dementia by HAART does not depend on cerebrospinal fluid drug penetrance. Aids Res Hum Retroviruses 20(5):483–491

    Article  CAS  PubMed  Google Scholar 

  80. Letendre S et al (2008) Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 65(1):65–70

    Article  PubMed  PubMed Central  Google Scholar 

  81. Handoko R, Spudich S (2019) Treatment of central nervous system manifestations of HIV in the current era. Semin Neurol 39(3):391–398

    Article  PubMed  Google Scholar 

  82. Curley P et al (2016) Efavirenz is predicted to accumulate in brain tissue: an in Silico, in vitro, and in vivo investigation. Antimicrob Agents Chemother 61(1):e01841–16. https://doi.org/10.1128/AAC.01841-16

    Article  PubMed  PubMed Central  Google Scholar 

  83. Eggers C, Hoetelmans R, Laer S (2020) Zidovudine and lamivudine reach higher concentrations in ventricular than in lumbar human cerebrospinal fluid. AIDS 34(13):1883–1889

    Article  CAS  PubMed  Google Scholar 

  84. Shikuma CM et al (2012) Antiretroviral monocyte efficacy score linked to cognitive impairment in HIV. Antivir Ther 17(7):1233–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fabbiani M et al (2015) Antiretroviral neuropenetration scores better correlate with cognitive performance of HIV-infected patients after accounting for drug susceptibility. Antivir Ther 20(4):441–447

    Article  CAS  PubMed  Google Scholar 

  86. Kanmogne GD et al (2012) Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells. IJN 7:2373–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Epstein AA et al (2013) Combinatorial assessments of brain tissue metabolomics and histopathology in rodent models of human immunodeficiency virus infection. J Neuroimmune Pharmacol 8(5):1224–1238

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lanman T et al (2019) CNS neurotoxicity of antiretrovirals. J Neuroimmune Pharmacol 16(1):130–143. https://doi.org/10.1007/s11481-019-09886-7

    Article  PubMed  PubMed Central  Google Scholar 

  89. Santos GMA et al (2019) Cross-sectional and cumulative longitudinal central nervous system penetration effectiveness scores are not associated with neurocognitive impairment in a well treated aging human immunodeficiency virus-positive population in Switzerland. Open Forum Infect Dis 6(7):ofz277. https://doi.org/10.1093/ofid/ofz277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thakur KT et al (2019) Global HIV neurology: a comprehensive review. AIDS 33(2):163–184

    Article  PubMed  Google Scholar 

  91. Dalakas MC, Semino-Mora C, Leon-Monzon M (2001) Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2′3′-dideoxycytidine (ddC). Lab Invest 81(11):1537–1544

    Article  CAS  PubMed  Google Scholar 

  92. Estanislao L, Thomas D, Simpson D (2004) HIV neuromuscular disease and mitochondrial function. Mitochondrion 4(2–3):131–139

    Article  CAS  PubMed  Google Scholar 

  93. Kallianpur AR, Hulgan T (2009) Pharmacogenetics of nucleoside reverse-transcriptase inhibitor-associated peripheral neuropathy. Pharmacogenomics 10(4):623–637

    Article  CAS  PubMed  Google Scholar 

  94. Robinson-Papp J, Simpson DM (2009) Neuromuscular diseases associated with HIV‑1 infection. Muscle Nerve 40(6):1043–1053

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chow FC et al (2017) Relationship between HIV infection, antiretroviral therapy, inflammatory markers, and cerebrovascular endothelial function among adults in Urban China. J Acquir Immune Defic Syndr 74(3):339–346

    Article  PubMed  PubMed Central  Google Scholar 

  96. Boly L, Cafaro V, Dyner T (2006) Depressive symptoms predict increased incidence of neuropsychiatric side effects in patients treated with efavirenz. J Acquir Immune Defic Syndr 42(4):514–515

    Article  PubMed  Google Scholar 

  97. Bertrand L, Dygert L, Toborek M (2016) Antiretroviral treatment with efavirenz disrupts the blood-brain barrier integrity and increases stroke severity. Sci Rep 6:39738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Decloedt EH, Maartens G (2013) Neuronal toxicity of efavirenz: a systematic review. Expert Opin Drug Saf 12(6):841–846

    Article  CAS  PubMed  Google Scholar 

  99. Ovbiagele B, Nath A (2011) Increasing incidence of ischemic stroke in patients with HIV infection. Neurology 76(5):444–450

    Article  PubMed  PubMed Central  Google Scholar 

  100. Markowitz M et al (1995) A preliminary study of ritonavir, an inhibitor of HIV‑1 protease, to treat HIV‑1 infection. N Engl J Med 333(23):1534–1539

    Article  CAS  PubMed  Google Scholar 

  101. Madeddu G et al (2012) Raltegravir central nervous system tolerability in clinical practice: results from a multicenter observational study. AIDS 26(18):2412–2415

    Article  CAS  PubMed  Google Scholar 

  102. Raffi F et al (2013) Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV‑1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING‑2 study. Lancet 381(9868):735–743

    Article  CAS  PubMed  Google Scholar 

  103. Govender R et al (2011) Neurologic and neurobehavioral sequelae in children with human immunodeficiency virus (HIV-1) infection. J Child Neurol 26(11):1355–1364

    Article  PubMed  Google Scholar 

  104. Okulicz JF et al (2011) Virologic outcomes of HAART with concurrent use of cytochrome P450 enzyme-inducing antiepileptics: a retrospective case control study. AIDS Res Ther 8:18

    Article  PubMed  PubMed Central  Google Scholar 

  105. Okulicz JF et al (2013) The impact of enzyme-inducing antiepileptic drugs on antiretroviral drug levels: a case-control study. Epilepsy Res 103(2–3):245–253

    Article  CAS  PubMed  Google Scholar 

  106. Birbeck GL et al (2012) Evidence-based guideline: antiepileptic drug selection for people with HIV/AIDS: report of the quality standards subcommittee of the American Academy of Neurology and the Ad hoc task force of the commission on therapeutic strategies of the international league against epilepsy. Neurology 78(2):139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Centner CM et al (2018) Evolution of sensory neuropathy after initiation of antiretroviral therapy. Muscle Nerve 57(3):371–379

    Article  CAS  PubMed  Google Scholar 

  108. Sommer C et al (2018) Therapie akuter und chronischer immunvermittelter Neuropathien und Neuritiden. S2e-Leitlinie. Deutsche Gesellschaft für Neurologie (Hrsg.), Leitlinien für Diagnostik und Therapie in der Neurologie. www.dgn.org/leitlinien. Zugegriffen: 14.12.2020

  109. Basu D et al (2006) Changing spectrum of the diffuse infiltrative lymphocytosis syndrome. Arthritis Rheum Care Res 55(3):466–472

    Article  Google Scholar 

  110. Phillips TJ et al (2010) Pharmacological treatment of painful HIV-associated sensory neuropathy: a systematic review and meta-analysis of randomised controlled trials. PLoS ONE 5(12):e14433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Simpson DM, Brown S, Tobias J (2008) Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology 70(24):2305–2313

    Article  CAS  PubMed  Google Scholar 

  112. Hahn K et al (2004) A placebo-controlled trial of gabapentin for painful HIV-associated sensory neuropathies. J Neurol 251(10):1260–1266

    Article  CAS  PubMed  Google Scholar 

  113. Simpson DM et al (2010) Pregabalin for painful HIV neuropathy: a randomized, double-blind, placebo-controlled trial. Neurology 74(5):413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Simpson DM et al (2014) A randomized, double-blind, placebo-controlled trial and open-label extension study to evaluate the efficacy and safety of pregabalin in the treatment of neuropathic pain associated with human immunodeficiency virus neuropathy. Pain 155(10):1943–1954

    Article  CAS  PubMed  Google Scholar 

  115. Kieburtz K et al (1998) A randomized trial of amitriptyline and mexiletine for painful neuropathy in HIV infection. AIDS Clinical Trial Group 242 Protocol Team. Neurology 51(6):1682–1688

    Article  CAS  PubMed  Google Scholar 

  116. Shlay JC et al (1998) Acupuncture and amitriptyline for pain due to HIV-related peripheral neuropathy: a randomized controlled trial. Terry Beirn Community Programs for Clinical Research on AIDS. JAMA 280(18):1590–1595

    Article  CAS  PubMed  Google Scholar 

  117. Dinat N et al (2015) Randomized, double-blind, crossover trial of amitriptyline for analgesia in painful HIV-associated sensory neuropathy. PLoS ONE 10(5):e126297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Thoden J et al (2013) Therapy and prophylaxis of opportunistic infections in HIV-infected patients: a guideline by the German and Austrian AIDS societies (DAIG/OAG) (AWMF 055/066). Infection 41(Suppl 2):91–115

    Article  PubMed Central  Google Scholar 

  119. Dannemann B et al (1992) Treatment of toxoplasmic encephalitis in patients with AIDS. A randomized trial comparing pyrimethamine plus clindamycin to pyrimethamine plus sulfadiazine. The California Collaborative Treatment Group. Ann Intern Med 116(1):33–43

    Article  CAS  PubMed  Google Scholar 

  120. Leport C et al (1988) Treatment of central nervous system toxoplasmosis with pyrimethamine/sulfadiazine combination in 35 patients with the acquired immunodeficiency syndrome. Efficacy of long-term continuous therapy. Am J Med 84(1):94–100

    Article  CAS  PubMed  Google Scholar 

  121. Katlama C et al (1996) Pyrimethamine-clindamycin vs. pyrimethamine-sulfadiazine as acute and long-term therapy for toxoplasmic encephalitis in patients with AIDS. Clin Infect Dis 22(2):268–275

    Article  CAS  PubMed  Google Scholar 

  122. Cortese I et al (2019) Pembrolizumab Treatment for Progressive Multifocal Leukoencephalopathy. N Engl J Med 380(17):1597–1605

    Article  CAS  PubMed  Google Scholar 

  123. Giacomini PS et al (2014) Maraviroc and JC virus-associated immune reconstitution inflammatory syndrome. N Engl J Med 370(5):486–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schofer H et al (2020of) Diagnosis and treatment of syphilis: Update of the S2k guidelines 2020 of the German STI Society (DSTIG) in cooperation with the following specialist societies: DAIG, dagna, DDG, DGA, DGGG, DGHM, DGI, DGN, DGPI, DGU, RKI. Hautarzt 71(12):969–999. https://doi.org/10.1007/s00105-020-04672-6

  125. Ghanem KG et al (2009) Lumbar puncture in HIV-infected patients with syphilis and no neurologic symptoms. Clin Infect Dis 48(6):816–821

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katrin Hahn or Matthias Maschke.

Ethics declarations

Interessenkonflikt

Siehe Interessenkonflikterklärung auf www.dgn.org/leitlinien.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

P. Berlit, Berlin

Fachgesellschaft

Deutsche Gesellschaft für Neurologie (DGN)

Federführend

PD Dr. Katrin Hahn, Klinik für Neurologie, Universitätsmedizin Charité, Charitéplatz 1, 10117 Berlin, E‑Mail: katrin.hahn@charite.de

Prof. Dr. Matthias Maschke, Neurologische Abteilung, Krankenhaus der Barmherzigen Brüder, Trier, E‑Mail: m.maschke@bk-trier.de

Redaktionskomitee

PD Dr. Katrin Hahn, Klinik für Neurologie, Universitätsmedizin Charité, Charitéplatz 1, 10117 Berlin

Prof. Dr. Matthias Maschke, Abteilung für Neurologie und Neurophysiologie, Krankenhaus der Barmherzigen Brüder, Trier

Prof. Dr. Gabriele Arendt, Neuro-Centrum Düsseldorf für die Deutsche Gesellschaft für Neuro-AIDS und Neuro-Infektiologie (DGNANI)

PD Dr. Christian Eggers, Neurologische Klinik, Kepler Universitätsklinikum Linz, Österreich (ÖGN)

Prof. Dr. Hansjakob Furrer, Universitätsklinik für Infektiologie, Universitätsspital Bern, 3010 Bern, Schweiz (SNG)

Die vollständige Leitlinie wurde unter https://dgn.org/leitlinien/diagnostik-und-therapie-hiv-1-assoziierter-neurologischer-erkrankungen/ am 14.12.2020 publiziert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, K., Maschke, M. S1-Leitlinie: Diagnostik und Therapie HIV-1-assoziierter neurologischer Erkrankungen. DGNeurologie 4, 165–183 (2021). https://doi.org/10.1007/s42451-021-00335-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42451-021-00335-5

Navigation