Skip to main content
Log in

Recent Progress in the Biological Basis of Remodeling Tissue Regeneration Using Nanofibers: Role of Mesenchymal Stem Cells and Biological Molecules

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Opening up new and unlimited avenues in the biomedical field, tissue engineering and regenerative medicine, the electrospinning process is considered as a versatile and the most preferred technique for the fabrication of nanofibers. These tailor-designed nanofibers provide a desirable and bio-inspired physiological niche to cells for better attachment and subsequent proliferation. In this review, an attempt is made to explain the importance of various topological and morphological parameters of nanofibrous scaffolds for efficient bio-mimicking. Some novel approaches (e.g., appropriate functionalization and extracellular matrix derived from decellularization) utilized for better mimicking and exponential growth of regenerating tissues are also discussed. Furthermore, this review highlights the important parameters necessary for the attachment, proliferation and differentiation of the mesenchymal stem cells for tissue regeneration. The importance of growth factors and their role after introducing the electrospinning techniques for efficient delivery and their role in the proliferation of mesenchymal stem cells in the different specific lineage (e.g., tenogenic, chondrogenic, neurogenic and osteogenic differentiation) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yi D K, Nanda S S, Kim K, Selvan S T. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. Journal of Materials Chemistry B, 2017, 5, 9429–9451.

    Article  Google Scholar 

  2. Abdal-hay A, Sheikh F A, Lim J K. Air jet spinning of hydroxyapatite/poly (lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2013, 102, 635–643.

    Article  Google Scholar 

  3. Coverdale B D, Gough J E, Sampson W W, Hoyland J A. Use of lecithin to control fibre morphology in electrospun poly (ε-caprolactone) scaffolds for improved tissue engineering applications. Journal of Biomedical Materials Research Part A, 2017, 105, 2865–2874.

    Article  Google Scholar 

  4. Nazm Bojnordi M, Ebrahimi-Barough S, Vojoudi E, Ghasemi H H. Silk nanofibrous electrospun scaffold enhances differentiation of embryonic stem like cells derived from testis in to mature neuron. Journal of Biomedical Materials Research Part A, 2018, 106, 2662–2669.

    Article  Google Scholar 

  5. Wetteland C L, Liu H. Optical and biological properties of polymer-based nanocomposites with improved dispersion of ceramic nanoparticles. Journal of Biomedical Materials Research Part A, 2018, 106, 2692–2707.

    Article  Google Scholar 

  6. Liu W, Thomopoulos S, Xia Y. Electrospun nanofibers for regenerative medicine. Advanced Healthcare Materials, 2012, 1, 10–25.

    Article  Google Scholar 

  7. Ashraf R, Sofi H S, Malik A, Beigh M A, Hamid R, Sheikh F A. Recent trends in the fabrication of starch nanofibers: Electrospinning and non-electrospinning routes and their applications in biotechnology. Applied Biochemistry and Biotechnology, 2018, 187, 47–74.

    Article  Google Scholar 

  8. Huan S, Liu G, Han G, Cheng W, Fu Z, Wu Q, Wang Q. Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers. Materials, 2015, 8, 2718–2734.

    Article  Google Scholar 

  9. Barakat N A M, Abadir M F, Sheikh F A, Kanjwal M A, Park S J, Kim H Y. Polymeric nanofibers containing solid nanoparticles prepared by electrospinning and their applications. Chemical Engineering Journal, 2010, 156, 487–495.

    Article  Google Scholar 

  10. Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Progress in Polymer Science, 2010, 35, 868–892.

    Article  Google Scholar 

  11. Feltz K P, Kalaf E A G, Chen C, Martin R S, Sell S A. A review of electrospinning manipulation techniques to direct fiber deposition and maximize pore size. Electrospinning, 2017, 1, 46–61.

    Article  Google Scholar 

  12. Tenchurin T K, Belousov S I, Kiryukhin Y I, Istranov L P, Istranova E V, Shepelev A D, Mamagulashvili V G, Kamyshinsky R A, Chvalun S N. Control on rheological behavior of collagen 1 dispersions for efficient electrospinning. Journal of Biomedical Materials Research Part A, 2018, 107, 312–318.

    Article  Google Scholar 

  13. Sheikh F A, Ju H W, Lee J M, Moon B M, Park H J, Lee O J, Kim J H, Kim D K, Park C H. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine: Nanotechnology, Biology and Medicine, 2015, 11, 681–691.

    Article  Google Scholar 

  14. Rath G, Hussain T, Chauhan G, Garg T, Goyal A K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. Journal of Drug Targeting, 2016, 24, 520–529.

    Article  Google Scholar 

  15. Bagher Z, Azami M, Ebrahimi-Barough S, Mirzadeh H, Solouk A, Soleimani M, Ai J, Nourani M R, Joghataei M T. Differentiation of Wharton’s jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-grafted nanofibers. Molecular Neurobiology, 2016, 53, 2397–2408.

    Article  Google Scholar 

  16. Basu P, Repanas A, Chatterjee A, Glasmacher B, NarendraKumar U, Manjubala I. PEO-CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications. Materials Letters, 2017, 195, 10–13.

    Article  Google Scholar 

  17. Wani S, Sofi H S, Majeed S, Sheikh F A. Recent trends in chitosan nanofibers: From tissue-engineering to environmental importance: A review. Material Science Research India, 2017, 14, 89–99.

    Article  Google Scholar 

  18. Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X, Lu T. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sciences, 2016, 148, 139–144.

    Article  Google Scholar 

  19. Saadatkish N, Nouri Khorasani S, Morshed M, Allafchian A R, Beigi M H, Masoudi Rad M, Esmaeely N R, Nasr-Esfahani M H. A ternary nanofibrous scaffold potential for central nerve system tissue engineering. Journal of Biomedical Materials Research Part A, 2018, 106, 2394–2401.

    Article  Google Scholar 

  20. Chahal S, Hussain F S J, Kumar A, Rasad M S B A, Yusoff M M. Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Chemical Engineering Science, 2016, 144, 17–29.

    Article  Google Scholar 

  21. Sheikh F A, Ju H W, Moon B M, Lee O J, Kim J H, Park H J, Kim D W, Kim D K, Jang J E, Khang G, Park C H. Hybrid scaffolds based on PLGA and silk for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 209–221.

    Article  Google Scholar 

  22. Mehrasa M, Asadollahi M A, Ghaedi K, Salehi H, Arpanaei A. Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering. International Journal of Biological Macromolecules, 2015, 79, 687–695.

    Article  Google Scholar 

  23. Haddad T, Noel S, Liberelle B, El Ayoubi R, Ajji A, De Crescenzo G. Fabrication and surface modification of poly lactic acid (PLA) scaffolds with epidermal growth factor for neural tissue engineering. Biomatter, 2016, 6, e1231276.

    Article  Google Scholar 

  24. Zhao C, Tan A, Pastorin G, Ho H K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnology Advances, 2013, 31, 654–668.

    Article  Google Scholar 

  25. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zú~niga R, Salda~na-Koppel D A, Qui~nones-Olvera L F. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Research International, 2015, 2015, 821279.

    Article  Google Scholar 

  26. Nagarajan S, Soussan L, Bechelany M, Teyssier C, Cavaillès V, Pochat-Bohatier C, Miele P, Kalkura N, Janot J M, Balme S. Novel biocompatible electrospun gelatin fiber mats with antibiotic drug delivery properties. Journal of Materials Chemistry B, 2016, 4, 1134–1141.

    Article  Google Scholar 

  27. Sankar S, Sharma C S, Rath S N, Ramakrishna S. Electrospun fibers for recruitment and differentiation of stem cells in regenerative medicine. Biotechnology Journal, 2017, 12, 201700263.

    Article  Google Scholar 

  28. Hinderer S, Layland S L, Schenke-Layland K. ECM and ECM-like materials — Biomaterials for applications in regenerative medicine and cancer therapy. Advanced Drug Delivery Reviews, 2016, 97, 260–269.

    Article  Google Scholar 

  29. Park S B, Lih E, Park K S, Joung Y K, Han D K. Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 2017, 68, 77–105.

    Article  Google Scholar 

  30. Guo B, Lei B, Li P, Ma P X. Functionalized scaffolds to enhance tissue regeneration. Regenerative Biomaterials, 2015, 2, 47–57.

    Article  Google Scholar 

  31. Kurtz I S, Schiffman J D. Current and emerging approaches to engineer antibacterial and antifouling electrospun nanofibers. Materials, 2018, 11, 1059.

    Article  Google Scholar 

  32. Tellado S F, Balmayor E R, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Advanced Drug Delivery Reviews, 2015, 94, 126–140.

    Article  Google Scholar 

  33. Nagarajan S, Pochat-Bohatier C, Balme S, Miele P, Kalkura N, Bechelany M. Electrospun fibers in regenerative tissue engineering and drug delivery. Pure and Applied Chemistry, 2017, 89, 1799–1808.

    Article  Google Scholar 

  34. Zhao P, Gu H, Mi H, Rao C, Fu J, Turng L S. Fabrication of scaffolds in tissue engineering: A review. Frontiers of Mechanical Engineering, 2018, 13, 107–119.

    Article  Google Scholar 

  35. Stoppel W L, Ghezzi C E, McNamara S L, Black III L D, Kaplan D L. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Annals of Biomedical Engineering, 2015, 43, 657–680.

    Article  Google Scholar 

  36. Carrow J K, Gaharwar A K. Bioinspired polymeric nanocomposites for regenerative medicine. Macromolecular Chemistry and Physics, 2015, 216, 248–264.

    Article  Google Scholar 

  37. Mogoşanu G D, Grumezescu A M. Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics, 2014, 463, 127–136.

    Article  Google Scholar 

  38. Bello A B, Park H, Lee S. Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomaterialia, 2018, 72, 1–15.

    Article  Google Scholar 

  39. Wang S, Hu F, Li J, Zhang S, Shen M, Huang M, Shi X. Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2017, 14, 2505–2520.

    Article  Google Scholar 

  40. Fu Y, Liu L, Cheng R, Cui W. ECM decorated electrospun nanofiber for improving bone tissue regeneration. Polymers, 2018, 10, 272–284.

    Article  Google Scholar 

  41. Xu H, Cai S, Xu L, Yang Y. Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir, 2014, 30, 8461–8470.

    Article  Google Scholar 

  42. Abagnale G, Steger M, Nguyen V H, Hersch N, Sechi A, Joussen S, Denecke B, Merkel R, Hoffmann B, Dreser A, Schnakenberg U, Gillner A, Wagner W. Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials, 2015, 61, 316–326.

    Article  Google Scholar 

  43. Engler A J, Sen S, Sweeney H L, Discher D E. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126, 677–689.

    Article  Google Scholar 

  44. Schellenberg A, Joussen S, Moser K, Hampe N, Hersch N, Hemeda H, Schnitker J, Denecke B, Lin Q, Pallua N, Zenke M, Merkel R, Hoffmann V, Wagner W. Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells. Biomaterials, 2014, 35, 6351–6358.

    Article  Google Scholar 

  45. Burrow G M, Gaylord T K. Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures. Micromachines, 2011, 2, 221–257.

    Article  Google Scholar 

  46. Abagnale G, Sechi A, Steger M, Zhou Q, Kuo C C, Aydin G, Schalla C, Muller-Newen G, Zenke M, Costa I, van Rijn P, Gillner A, Wagner W. Surface topography guides morphology and spatial patterning of induced pluripotent stem cell colonies. Stem Cell Reports, 2017, 9, 654–666.

    Article  Google Scholar 

  47. Beachley V, Kasyanov V, Nagy-Mehesz A, Norris R, Ozolanta I, Kalejs M, Stradins P, Baptista L, da Silva K, Grainjero J, Wen X, Mironov V. The fusion of tissue spheroids attached to pre-stretched electrospun polyurethane scaffolds. Journal of Tissue Engineering, 2014, 5, 1–11.

    Article  Google Scholar 

  48. Nandakumar A, Birgani Z T, Santos D, Mentink A, Auffermann N, van der Werf K, Bennink M, Moroni L, van Blitterswijk C, Habibovic P. Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration. Biofabrication, 2012, 5, 015006.

    Article  Google Scholar 

  49. Khandaker M, Riahinezhad S, Jamadagni H G, Morris T, Coles A V, Vaughan M B. Use of polycaprolactone electrospun nanofibers as a coating for poly (methyl methacrylate) bone cement. Nanomaterials, 2017, 7, 175–191.

    Article  Google Scholar 

  50. Tuzlakoglu K, Bolgen N, Salgado A, Gomes M E, Piskin E, Reis R L. Nano-and micro-fiber combined scaffolds: A new architecture for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2005, 16, 1099–1104.

    Google Scholar 

  51. Zamani F, Amani-Tehran M, Latifi M, Shokrgozar M A. The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. Journal of Materials Science: Materials in Medicine, 2013, 24, 1551–1560.

    Google Scholar 

  52. Zhang C, Yuan H, Liu H, Chen X, Lu P, Zhu T, Yang L, Yin Z, Heng B C, Zhang Y, Ouyang H. Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials, 2015, 53, 716–730.

    Article  Google Scholar 

  53. Stachewicz U, Szewczyk PK, Kruk A, Barber A H, Czyrska-Filemonowicz A. Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Materials Science and Engineering: C, 2017, 95, 397–408.

    Article  Google Scholar 

  54. Lowery J L, Datta N, Rutledge G C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (ε-caprolactone) fibrous mats. Biomaterials, 2010, 31, 491–504.

    Article  Google Scholar 

  55. Lee J, Jang J, Oh H, Jeong Y H, Cho D W. Fabrication of a three-dimensional nanofibrous scaffold with lattice pores using direct-write electrospinning. Materials Letters, 2013, 93, 397–400.

    Article  Google Scholar 

  56. Wu J, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioactive Materials, 2016, 1, 56–64.

    Article  Google Scholar 

  57. Moura D, Souza M, Liverani L, Rella G, Luz G, Mano J, Boccaccini A R. Development of a bioactive glass-polymer composite for wound healing applications. Materials Science and Engineering: C, 2017, 76, 224–232.

    Article  Google Scholar 

  58. Nagarajan S, Belaid H, Pochat-Bohatier C, Teyssier C, Iatsunskyi I, Coy E, Balme S, Cornu D. Design of boron nitride/gelatin electrospun nanofibers for bone tissue engineering. ACS Applied Materials & Interfaces, 2017, 9, 33695–33706.

    Article  Google Scholar 

  59. Zhang K, Zheng H, Liang S, Gao C. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomaterialia, 2016, 37, 131–142.

    Article  Google Scholar 

  60. Gentile P, Ferreira A M, Callaghan J T, Miller C A, Atkinson J, Freeman C, Hatton P V. Multilayer nanoscale encapsulation of biofunctional peptides to enhance bone tissue regeneration in vivo. Advanced Healthcare Materials, 2017, 6, 1601182.

    Article  Google Scholar 

  61. Poel W E. Preparation of acellular homogenates from muscle samples. Science, 1948, 108, 390–391.

    Article  Google Scholar 

  62. Keane T, Saldin L, Badylak S. Decellularization of mammalian tissues: Preparing extracellular matrix bioscaffolds. in Characterisation and Design of Tissue Scaffolds, Woodhead Publishing Series in Biomaterials, Elsevier, Amstenlam, Holland, 2016, 75–103.

    Chapter  Google Scholar 

  63. Gu Y, Zhu J, Xue C, Li Z, Ding F, Yang Y, Gu X. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials, 2014, 35, 2253–2263.

    Article  Google Scholar 

  64. Shih D T, Lee D C, Chen S C, Tsai R Y, Huang C T, Tsai C C, Shen E Y, Chiu W T. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells, 2005, 23, 1012–1020.

    Article  Google Scholar 

  65. Zhang Z, Wang X, Wang S. Isolation and characterization of mesenchymal stem cells derived from bone marrow of patients with Parkinson’s disease. In Vitro Cellular & Developmental Biology-Animal, 2008, 44, 169–177.

    Article  Google Scholar 

  66. You S, Kublin C L, Avidan O, Miyasaki D, Zoukhri D. Isolation and propagation of mesenchymal stem cells from the lacrimal gland. Investigative Ophthalmology & Visual Science, 2011, 52, 2087–2094.

    Article  Google Scholar 

  67. Bruno S, Bussolati B, Grange C, Collino F, di Cantogno L V, Herrera M B. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells and Development, 2009, 18, 867–880.

    Article  Google Scholar 

  68. Pereira W C, Khushnooma I, Madkaikar M, Ghosh K. Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 394–399.

    Article  Google Scholar 

  69. Ansari S, Diniz I M, Chen C, Sarrion P, Tamayol A, Wu B M, Moshaverinia A. Human periodontal ligament- and gingival-derived mesenchymal stem cells promote nerve regeneration when encapsulated in alginate/hyaluronic acid 3D scaffold. Advanced Healthcare Materials, 2017, 6, 1700670.

    Article  Google Scholar 

  70. Martins A, Alves da Silva M L, Faria S, Marques A P, Reis R L, Neves N M. The influence of patterned nanofiber meshes on human mesenchymal stem cell osteogenesis. Macromolecular Bioscience, 2011, 11, 978–987.

    Article  Google Scholar 

  71. Jiang Y C, Jiao H L, Lee M S, Wang T, Turng L S, Li Q, Li W J. Endogenous biological factors modulated by substrate stiffness regulate endothelial differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 2018, 106, 1595–1603.

    Article  Google Scholar 

  72. Dan Y Y. Bioengineering the artificial liver with non-hepatic cells: Where are we headed? Journal of Gastroenterology and Hepatology, 2009, 24, 171–173.

    Article  Google Scholar 

  73. Sevivas N, Teixeira F G, Portugal R, Direito-Santos B, Espregueira-Mendes J, Oliveira F J, Silva R F, Sousa N, Sow W T, Nguyen L T H, Ng K W, Salgado A J. Mesenchymal stem cell secretome improves tendon cell viability in vitro and tendon-bone healing in vivo when a tissue engineering strategy is used in a rat model of chronic massive rotator cuff tear. The American Journal of Sports Medicine, 2018, 46, 449–459.

    Article  Google Scholar 

  74. Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S. A review of key challenges of electrospun scaffolds for tissue — Engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 715–738.

    Article  Google Scholar 

  75. Ma J, He X, Jabbari E. Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly (L-lactide) nanofibers. Annals of Biomedical Engineering, 2011, 39, 14–25.

    Article  Google Scholar 

  76. Zhang C, Wang X, Zhang E, Yang L, Yuan H, Tu W, Zhang H, Yin Z, Shen W, Chen X, Zhang Y, Ouyang H. An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering. Acta Biomaterialia, 2018, 66, 141–156.

    Article  Google Scholar 

  77. Sharma C S, Sharma A, Madou M. Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers. Langmuir, 2010, 26, 2218–2222.

    Article  Google Scholar 

  78. Dumas V, Guignandon A, Vico L, Mauclair C, Zapata X, Linossier MT, Bouleftour W, Granier J, Peyroche S, Dumas J C. Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomedical Materials, 2015, 10, 055002.

    Article  Google Scholar 

  79. Orr S B, Chainani A, Hippensteel K J, Kishan A, Gilchrist C, Garrigues N W, Ruch D S, Guilak F, Little D. Aligned multilayered electrospun scaffolds for rotator cuff tendon tissue engineering. Acta Biomaterialia, 2015, 24, 117–126.

    Article  Google Scholar 

  80. Vimal S K, Ahamad N, Katti D S. A simple method for fabrication of electrospun fibers with controlled degree of alignment having potential for nerve regeneration applications. Materials Science and Engineering: C, 2016, 63, 616–627.

    Article  Google Scholar 

  81. Cui L, Zhang N, Cui W, Zhang P, Chen X. A novel nano/micro-fibrous scaffold by melt-spinning method for bone tissue engineering. Journal of Bionic Engineering, 2015, 12, 117–128.

    Article  Google Scholar 

  82. Sahoo S, Teh T K, He P, Toh S L, Goh J C. Interface tissue engineering: Next phase in musculoskeletal tissue repair. Annals of the Academy of Medicine-Singapore, 2011, 40, 245–251.

    Google Scholar 

  83. Santo V E, Gomes M E, Mano J F, Reis R L. Controlled release strategies for bone, cartilage, and osteochondral engineering — part I: Recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Engineering Part B: Reviews, 2013, 19, 308–326.

    Article  Google Scholar 

  84. Qu H, Wei S, Guo Z. Coaxial electrospun nanostructures and their applications. Journal of Materials Chemistry A, 2013, 1, 11513–11528.

    Article  Google Scholar 

  85. Maleki M, Latifi M, Amani-Tehran M, Mathur S. Electrospun core — Shell nanofibers for drug encapsulation and sustained release. Polymer Engineering & Science, 2013, 53, 1770–1779.

    Article  Google Scholar 

  86. Liu J J, Wang C Y, Wang J G, Ruan H J, Fan C Y. Peripheral nerve regeneration using composite poly (lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. Journal of Biomedical Materials Research Part A, 2011, 96A, 13–20.

    Article  Google Scholar 

  87. Nasehi F, Karshenas M, Nadri S, Barati G, Salim A. Core-shell fibrous scaffold as a vehicle for sustained release of retinal pigmented epithelium-derived factor (PEDF) for photoreceptor differentiation of conjunctiva mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 2017, 105, 3514–3519.

    Article  Google Scholar 

  88. Wang C, Hou W, Guo X, Li J, Hu T, Qiu M, Liu S, Mo X, Liu X. Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration. Materials Science and Engineering: C, 2017, 79, 507–515.

    Article  Google Scholar 

  89. Xu R, Zhao H, Muhammad H, Dong M, Besenbacher F, Chen M. Dual-delivery of FGF-2/CTGF from silk fibroin/PLCL-PEO coaxial fibers enhances MSC proliferation and fibrogenesis. Scientific Reports, 2017, 7, 1–11.

    Article  Google Scholar 

  90. He M, Jiang H, Wang R, Xie Y, Zhao C. Fabrication of metronidazole loaded poly (ε-caprolactone)/zein core/shell nanofiber membranes via coaxial electrospinning for guided tissue regeneration. Journal of Colloid and Interface Science, 2017, 490, 270–278.

    Article  Google Scholar 

  91. Yin L, Wang K, Lv X, Sun R, Yang S, Yang Y, Liu Y, Liu J, Zhou J, Yu Z. The fabrication of an ICA-SF/PLCL nanofibrous membrane by coaxial electrospinning and its effect on bone regeneration in vitro and in vivo. Scientific Reports, 2017, 7, 1–12.

    Article  Google Scholar 

  92. Bruggeman KF, Williams RJ, Nisbet DR. Dynamic and responsive growth factor delivery from electrospun and hydrogel tissue engineering materials. Advanced Healthcare Materials, 2018, 7, 8616.

    Article  Google Scholar 

  93. Li F, Yin X Y, Yin X Z. Instability of a leaky dielectric coaxial jet in both axial and radial electric fields. Physical Review E, 2008, 78, 036302.

    Article  Google Scholar 

  94. Rieger K A, Birch N P, Schiffman J D. Designing electrospun nanofiber mats to promote wound healing — A review. Journal of Materials Chemistry B, 2013, 1, 4531–4541.

    Article  Google Scholar 

  95. Gunn J, Zhang M. Polyblend nanofibers for biomedical applications: Perspectives and challenges. Trends in Biotechnology, 2010, 28, 189–197.

    Article  Google Scholar 

  96. Jose M V, Thomas V, Johnson K T, Dean D R, Nyairo E. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomaterialia, 2009, 5, 305–315.

    Article  Google Scholar 

  97. Liu X, Nielsen L H, Kłodzińska S N, Nielsen H M, Qu H, Christensen L P, Rantanen J, Yang M. Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 123, 42–49.

    Article  Google Scholar 

  98. Hu J, Tian L, Prabhakaran M P, Ding X, Ramakrishna S. Fabrication of nerve growth factor encapsulated aligned poly (ε-caprolactone) nanofibers and their assessment as a potential neural tissue engineering scaffold. Polymers, 2016, 8, 54–71.

    Article  Google Scholar 

  99. Wittmer C R, Claudepierre T, Reber M, Wiedemann P, Garlick J A, Kaplan D, Egles C. Multifunctionalized electrospun silk fibers promote axon regeneration in the central nervous system. Advanced Functional Materials, 2011, 21, 4202.

    Article  Google Scholar 

  100. Lin J, Zhou W, Han S, Bunpetch V, Zhao K, Liu C, Yin Z, Ouyang H. Cell-material interactions in tendon tissue engineering. Acta Biomaterialia, 2018, 70, 1–11.

    Article  Google Scholar 

  101. Oshita T, Tobita M, Tajima S, Mizuno H. Adipose-derived stem cells improve collagenase-induced tendinopathy in a rat model. The American Journal of Sports Medicine, 2016, 44, 1983–1989.

    Article  Google Scholar 

  102. Czaplewski S K, Tsai T L, Duenwald-Kuehl S E, Vanderby Jr R, Li W J. Tenogenic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells dictated by properties of braided submicron fibrous scaffolds. Biomaterials, 2014, 35, 6907–6917.

    Article  Google Scholar 

  103. Qin T W, Sun Y L, Thoreson A R, Steinmann S P, Amadio P C, An K N, Zhao C. Effect of mechanical stimulation on bone marrow stromal cell-seeded tendon slice constructs: A potential engineered tendon patch for rotator cuff repair. Biomaterials, 2015, 51, 43–50.

    Article  Google Scholar 

  104. Maghdouri-White Y, Petrova S, Sori N, Polk S, Wriggers H, Ogle R, Ogle R C, Francis M. Electrospun silk-collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration. Biomedical Physics & Engineering Express, 2018, 4, 1–15.

    Article  Google Scholar 

  105. Perikamana S K M, Lee J, Ahmad T, Kim E M, Byun H, Lee S, Shin H. Harnessing biochemical and structural cues for tenogenic differentiation of adipose derived stem cells (ADSCs) and development of an in vitro tissue interface mimicking tendon-bone insertion graft. Biomaterials, 2018, 165, 79–93.

    Article  Google Scholar 

  106. Laranjeira M, Domingues R. Costa-Almeida R, Reis R L, Gomes M E. 3D Mimicry of native-tissue-fiber architecture guides tendon-derived cells and adipose stem cells into artificial tendon constructs. Small, 2017, 13, 1700689.

    Article  Google Scholar 

  107. Qiu Y, Lei J, Koob T J, Temenoff J S. Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen-fibre scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 989–999.

    Article  Google Scholar 

  108. Wang J, Sun B, Tian L, He X, Gao Q, Wu T, Ramakrishna S, Zheng J, Mo X. Evaluation of the potential of rhTGF-β3 encapsulated P(LLA-CL)/ collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton’s jelly of human umbilical cord. Materials Science and Engineering: C, 2017, 70, 637–645.

    Article  Google Scholar 

  109. Reboredo J W, Weigel T, Steinert A, Rackwitz L, Rudert M, Walles H. Investigation of migration and differentiation of human mesenchymal stem cells on five-layered collagenous electrospun scaffold mimicking native cartilage structure. Advanced Healthcare Materials, 2016, 5, 2191–2198.

    Article  Google Scholar 

  110. Zamanlui S, Mahmoudifard M, Soleimani M, Bakhshandeh B, Vasei M, Faghihi S. Enhanced chondrogenic differentiation of human bone marrow mesenchymal stem cells on PCL/PLGA electrospun with different alignments and compositions. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 50–60.

    Article  Google Scholar 

  111. He X, Feng B, Huang C, Wang H, Ge Y, Hu R, Yin M, Xu Z, Wang W, Fu W, Zheng J. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering. International Journal of Nanomedicine, 2015, 10, 2089–2099.

    Google Scholar 

  112. Dahlin R L, Kinard L A, Lam J, Needham C J, Lu S, Kasper F K, Mikos A G. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials, 2014, 35, 7460–7469.

    Article  Google Scholar 

  113. Yin L, Yang S, He M, Chang Y, Wang K, Zhu Y, Liu Y, Chang Y, Yu Z. Physicochemical and biological characteristics of BMP-2/IGF-1-loaded three-dimensional coaxial electrospun fibrous membranes for bone defect repair. Journal of Materials Science: Materials in Medicine, 2017, 28, 94–109.

    Google Scholar 

  114. Ko E, Lee J S, Kim H, Yang S Y, Yang D, Yang K, Shin J, Yang H S, Ryu W, Cho S W. Electrospun silk fibroin nanofibrous scaffolds with two-stage hydroxyapatite functionalization for enhancing the osteogenic differentiation of human adipose-derived mesenchymal stem cells. ACS Applied Materials & Interfaces, 2018, 10, 7614–7625.

    Article  Google Scholar 

  115. Jones J R. Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 2013, 9, 4457–4486.

    Article  Google Scholar 

  116. Prabha R D, Kraft D C E, Harkness L, Melsen B, Varma H, Nair P D, Kjems J, Kassem M. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1537–e1548.

    Article  Google Scholar 

  117. Teh T K, Toh S L, Goh J C. Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells. Tissue Engineering Part A, 2013, 19, 1360–1372.

    Article  Google Scholar 

  118. Babitha S, Annamalai M, Dykas M M, Saha S, Poddar K, Venugopal J R, Ramakrishna S, Venkatesan T, Korrapati P S. Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 991–1001.

    Article  Google Scholar 

  119. Volkman R, Offen D. Mesenchymal stem cells in neurodegenerative diseases. Stem Cells, 2017, 38, 1867–1880.

    Article  Google Scholar 

  120. Murphy A R, Laslett A, O’Brien C M, Cameron N R. Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomaterialia, 2017, 54, 1–20.

    Article  Google Scholar 

  121. Yang E Z, Zhang G W, Xu J G, Chen S, Wang H, Cao L L, Liang B, Lian X. Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury. Acta Pharmacologica Sinica, 2017, 38, 623–637.

    Article  Google Scholar 

  122. Ghorbani S, Tiraihi T, Soleimani M. Differentiation of mesenchymal stem cells into neuron-like cells using composite 3D scaffold combined with valproic acid induction. Journal of Biomaterials Applications, 2018, 32, 702–715.

    Article  Google Scholar 

  123. Faghihi F, Mirzaei E, Ai J, Lotfi A, Sayahpour F A, Barough S E, Joghataei M T. Differentiation potential of human chorion-derived mesenchymal stem cells into motor neuron-like cells in two-and three-dimensional culture systems. Molecular Neurobiology, 2016, 53, 1862–1872.

    Article  Google Scholar 

  124. Carr M J, Johnston A P. Schwann cells as drivers of tissue repair and regeneration. Current Opinion in Neurobiology, 2017, 47, 52–57.

    Article  Google Scholar 

  125. Liu Q, Huang J, Shao H, Song L, Zhang Y. Dual-factor loaded functional silk fibroin scaffolds for peripheral nerve regeneration with the aid of neovascularization. RSC Advances, 2016, 6, 7683–7691.

    Article  Google Scholar 

  126. Zhao Y, Gong J, Niu C, Wei Z, Shi J, Li G, Yang Y, Wang H. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 2171–2185.

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded by DST Nano Mission sponsored project (SR/NM/NM-1038/2016) and Science and Engineering Research Board (SERB) research grants (ECR/2016/001429). Dr. Hern Kim acknowledges the financial support given by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20174010201160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faheem A. Sheikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, R., Sofi, H.S., Kim, H. et al. Recent Progress in the Biological Basis of Remodeling Tissue Regeneration Using Nanofibers: Role of Mesenchymal Stem Cells and Biological Molecules. J Bionic Eng 16, 189–208 (2019). https://doi.org/10.1007/s42235-019-0017-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0017-4

Keywords

Navigation