Skip to main content
Log in

Production and Characterization of High Density Polyethylene Reinforced by Eucalyptus Capsule Fibers

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In this work, Eucalyptus Capsule Fibers (ECF) are proposed as a new natural fiber reinforcement to produce bio-composites due to their biological origin, specific smell and color. High Density Polyethylene (HDPE) is used as the matrix to compare three reinforcement types, raw ECF, alkali treated ECF, and ECF treated with PE-graft-maleic anhydride (PE-g-MA) as a coupling agent at three concentrations (5 wt.%, 10 wt%, and 15 wt%). A complete set of characterization is performed including tension, torsion, hardness, Melt Flow Index (MFI), Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), Contact Angle (CA), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Dynamic Mechanical Analysis (DMA). The results show that the best mechanical and rheological improvements are obtained by using the coupling agent with alkali treated fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li W, Meng L, Ma R. Effect of surface treatment with potassium permanganate on ultra-high molecular weight polyethylene fiber reinforced natural rubber composites. Polymer Testing, 2016, 55, 10–16.

    Article  Google Scholar 

  2. Petchwattana N, Covavisaruch S. Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly(vinyl chloride). Journal of Bionic Engineering, 2013, 10, 110–117.

    Article  Google Scholar 

  3. Yusoff R B, Takagi H, Nakagaito A N. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops Product, 2016, 94, 562–573.

    Article  Google Scholar 

  4. Petchwattana N, Covavisaruch S. Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly(lactic acid) and rubber wood sawdust (Hevea brasiliensis). Journal of Bionic Engineering, 2014, 11, 630–637.

    Article  Google Scholar 

  5. AL-Oqla F M, Sapuan S M. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Product, 2014, 66, 347–354.

    Article  Google Scholar 

  6. Bravo A, Toubal L, Koffi D, Erchiqui F. Development of novel green and biocomposite materials: Tensile and flexural properties and damage analysis using acoustic emission. Materials & Design, 2015, 66, 16–28.

    Article  Google Scholar 

  7. Mejri M, Toubal L, Cuillière J C, Francois V. Fatigue life and residual strength of a short-natural fiber-reinforced plastic vs Nylon. Composites Part B, 2017, 110, 429–441.

    Article  Google Scholar 

  8. Binoj J S, Edwin R, Sreenivasan V S, Thusnavis G R. Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. Journal of Bionic Engineering, 2016, 13, 156–165.

    Article  Google Scholar 

  9. Pappu A, Patil V, Jain S, Mahindrakar A, Haque R, Thakur V K. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review. International Journal of Biological Macromolecules, 2015, 79, 449–458.

    Article  Google Scholar 

  10. Asim M, Jawaid M, Abdan K, Ishak M R. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering, 2016, 13, 426–435.

    Article  Google Scholar 

  11. Haque M, Rahman R, Islam N, Huque M, Hasan M. Mechanical properties of polypropylene composites reinforced with chemically treated coir and abaca fiber. Journal of Reinforced Plastics and Composites, 2010, 29, 2253–2261.

    Article  Google Scholar 

  12. Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N. Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydrates Polymer, 2014, 104, 223–230.

    Article  Google Scholar 

  13. Zannen S, Ghali L, Halimi M T, Ben Hssen M. Effect of chemical extraction on physicochemical and mechanical properties of doum palm fibres. Advanced Material Physiques and Chemistry, 2014, 4, 203–216.

    Article  Google Scholar 

  14. Mechakra H, Nour A, Lecheb S, Chellil A. Mechanical characterizations of composite material with short Alfa fibers reinforcement. Composites Structure, 2015, 124, 152–162.

    Article  Google Scholar 

  15. Qidwai M, Sheraz M A, Ahmed S, Alkhuraif A A, ur Rehman I. Preparation and characterization of bioactive composites and fibers for dental applications. Dental Materials, 2014, 30, 253–263.

    Article  Google Scholar 

  16. Lv J, Jiang Y, Zhang D. Structural and mechanical characterization of Atrina Pectinata and freshwater mussel shells. Journal of Bionic Engineering, 2015, 12, 276–284.

    Article  Google Scholar 

  17. Essabir H, Nekhlaoui S, Bensalah, M O, Rodrigue D, Bouhfid R, Qaiss A. Phosphogypsum waste used as reinforcing fillers in polypropylene based composites: Structural, mechanical and thermal properties. Journal of Polymer Environment, 2017, 25, 658–666.

    Article  Google Scholar 

  18. Qaiss A E K, Bouhfid R, Essabir H. Biomass and Bioenergy: Processing and Properties. Springer International Publishing, Switzerland, 2014, 225–244.

    Google Scholar 

  19. Qaiss A E K, Bouhfid R, Essabir H. Agricultural Biomass Based Potential Materials. Springer International Publishing, Switzerland, 2015, 305–339.

    Google Scholar 

  20. Hakeem K R, Jawaid M, Alothman O. Biocomposites based on argan nut shell and a polymer matrix: Effect of filler content and coupling agent. Carbohydrate Polymer, 2016, 143, 70–83.

    Article  Google Scholar 

  21. Essabir H, Achaby M E, Hilali E M, Bouhfid R, Qaiss A E. Morphological, structural, thermal and tensile properties of high density polyethylene composites reinforced with treated argan nut shell particles. Journal of Bionic Engineering, 2015, 12, 129–141.

    Article  Google Scholar 

  22. Salit M S, Jawaid M, Yusoff N B, Hoque M W. Manufacturing of Natural Fibre Reinforced Polymer Composites. Springer International Publishing, Switzerland, 2015, 177–197.

    Book  Google Scholar 

  23. Nekhlaoui S, Essabir H, Kunal D, Sonakshi M, Bensalah MO, Bouhfid R, Qaiss A. Comparative study for the talc and two kinds of Moroccan clay as reinforcements in polypropylene-SEBS-g-MA matrix. Polymer Composites, 2016, 36, 675–684.

    Article  Google Scholar 

  24. Jawaid M, Qaiss A K, Bouhfid R. Nanoclay Reinforced Polymer Composites: Natural Fiber/nanoclay Hybrid Composites. Springer International Publishing, Switzerland, 2016, 29–48.

    Book  Google Scholar 

  25. El Mechtali F Z, Essabir H, Nekhlaoui S, Bensalah M O, Jawaid M, Bouhfid R, Qaiss A E. Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. Journal of Bionic Engineering, 2015, 12, 83–94.

    Article  Google Scholar 

  26. Essabir H, Bensalah M O, Rodrigue D, Bouhfid R, Qaiss A. Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mechanics of Materials, 2016, 93, 134–144.

    Article  Google Scholar 

  27. Essabir H, Boujmal R, Bensalah M O, Rodrigue D, Bouhfid R, Qaiss A E K. Mechanical and thermal properties of hybrid composites: Oil-palm fiber/clay reinforced high density polyethylene. Mechanics of Materials, 2016, 98, 36–43.

    Article  Google Scholar 

  28. Essabir H, Hilali E, El Minor H, Bensalah M O, Bouhfid R, Qaiss A. Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan luffa sponge/high density polyethylene. Journal of Biobased Material and Bioenergy, 2015, 9, 350–357.

    Article  Google Scholar 

  29. Raji M, Essabir H, Essassi E M, Rodrigue D, Bouhfid R, Qaiss A. Morphological, thermal, mechanical, and rheological properties of high density polyethylene reinforced with Illite clay. Polymer Composites, 2016, DOI: https://doi.org/10.1002/pc.24096

    Google Scholar 

  30. Essabir H, Bensalah M O, Bouhfid R, Qaiss A. Fabrication and characterization of apricot shells particles reinforced high density polyethylene based bio-composites: Mechanical and thermal properties. Journal of Biobased Material and Bioenergy, 2014, 8, 344–351.

    Article  Google Scholar 

  31. Kakou C A, Essabir H, Bensalah M O, Bouhfid R, Rodrigue D, Qaiss A. Hybrid composites based on polyethylene and coir/oil palm fibers. Journal of Reinforced Plastics and Composites, 2015, 34, 1684–1697.

    Article  Google Scholar 

  32. Laaziz S A, Raji M, Hilali E, Essabir H, Rodrigue D, Bouhfid R, Qaiss A. Bio-composites based on polylactic acid and argan nut shell: Production and properties. International Journal of Biological Macromolecules, 2017, 104, 30–42.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by MAScIR; Moroccan Foundation for Advanced Science, Innovation and Research, MESRSFC and CNRST, Morocco Grant no. 1970/15. The authors would like to thank Mr. Mehdi Ait Dahi for his fruitful technical support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Essabir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouarhim, W., Bensalah, MO., Rodrigue, D. et al. Production and Characterization of High Density Polyethylene Reinforced by Eucalyptus Capsule Fibers. J Bionic Eng 15, 558–566 (2018). https://doi.org/10.1007/s42235-018-0046-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-018-0046-4

Keywords

Navigation