Skip to main content

Advertisement

Log in

The combined effects of induced magnetic field, thermophoresis and Brownian motion on double stratified nonlinear convective-radiative Jeffrey nanofluid flow with heat source/sink

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

This communication explores the theoretical investigation of induced magnetic field, thermophoresis and Brownian motion on an unsteady, laminar and incompressible nonlinear convective flow of Jeffrey nanofluid through a rectangular channel in presence of thermal radiation and heat source/sink. Further, we also considered double stratification and heat and mass flux conditions at the boundaries. The governing flow field equations are shortened into coupled non-dimensional system ordinary differential equation using an appropriate transformation, then carried out a numerical solution using fifth-order Runge–Kutta–Fehlberg scheme along with shooting technique. The effect of various non dimensional form of the characteristic function of flow, heat and mass transfers, induced magnetic field and skin friction are plotted with respect to the prominent physical parameters and calculated heat and mass transfer rates at the plates. The results so obtained are compared with the existing published work for viscous case which leads a considerable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

\( a \) :

Suction/injection ratio (mixed suction \( \left| {V_{2} } \right| \ge \left| {V_{1} } \right| \)) \( 1 - \frac{{V_{1} }}{{V_{2} }} \)

t:

Time

\( U_{0} \) :

Arbitrary velocity at \( x = 0 \)

\( \overline{B} \) :

Total magnetic field vector

h:

Width of the channel

\( B_{0} \) :

Applied magnetic field strength

\( B_{y} \) :

Radial induced magnetic field component

\( B_{x} \) :

Axial induced magnetic field component

\( V_{1} e^{i\omega t} \) :

Injection velocity

\( V_{2} e^{i\omega t} \) :

Suction velocity

C:

Concentration

P:

Pressure of the fluid

\( \overline{q} \) :

Velocity of the fluid

\( d_{1} ,d_{2} \) :

Intensities of thermal and solutal stratification

c:

Specific heat at constant temperature

\( c_{s} \) :

Concentration susceptibility

\( C^{*} \) :

Dimensionless concentration, \( \frac{{C - C_{1} e^{i\omega t} }}{{\left( {C_{2} - C_{1} } \right)e^{i\omega t} }} \)

\( C_{1} e^{i\omega t} \) :

Concentrations at the lower plate

\( C_{2} e^{i\omega t} \) :

Concentrations at the upper plate

\( k \) :

Thermal conductivity of the fluid

\( S_{t} \) :

Thermal stratification \( \frac{{d_{1} x}}{{T_{2} - T_{1} }} \)

\( S_{s} \) :

Solutal stratification \( \frac{{d_{2} x}}{{C_{2} - C_{1} }} \)

u:

Axial velocity component

v:

Radial velocity component

\( D_{B} \) :

Mass diffusion coefficient

\( T^{*} \) :

Non-dimensional temperature, \( \frac{{T - T_{1} e^{i\omega t} }}{{\left( {T_{2} - T_{1} } \right)e^{i\omega t} }} \)

\( T_{m} \) :

Reference temperature

T:

Temperature

\( T_{1} e^{i\omega t} ,T_{2} e^{i\omega t} \) :

Temperatures at the bottom and top plates, respectively

Pr:

Prandtl number, \( \frac{\mu c}{k} \)

Re:

Suction/injection Reynold’s number, \( \frac{{\rho V_{2} h}}{\mu } \)

Sc :

Schmidt number, \( \frac{\mu }{\rho D} \)

Ec :

Eckert number, \( \frac{{\mu V_{2} }}{{\rho hc\left( {T_{2} - T_{1} } \right)}} \)

Sh :

Sherwood number, \( \frac{{\dot{n}_{A} }}{{h\upsilon \left( {C_{2} - C_{1} } \right)}} \)

Gr :

Thermal Grashof number, \( \frac{{\rho g\beta_{0} \left( {T_{2} - T_{1} } \right)h^{2} }}{{\mu V_{2} }} \)

Gm :

Solutal Grashof number, \( \frac{{\rho g\beta_{2} \left( {C_{2} - C_{1} } \right)h^{2} }}{{\mu V_{2} }} \)

Rm :

Magnetic Reynolds number, \( \sigma \mu_{e} hV_{2} \)

St :

Strommer’s number (magnetic force number), \( \frac{{B_{0} }}{{V_{2} }}\sqrt {\frac{{\mu_{e} }}{\rho }} \)

Nb:

Brownian motion parameter \( \frac{{\tau_{1} D_{B} \left( {C_{2} - C_{1} } \right)}}{\alpha } \)

Nt:

Thermophoresis parameter \( \frac{{\tau_{1} D_{T} \left( {T_{2} - T_{1} } \right)}}{{T_{2} \alpha }} \)

\( 1/\sigma \mu_{e} \) :

Magnetic diffusivity

\( \bar{J} \) :

Current density

\( q_{w} ,q_{m} \) :

Heat and mass fluxes per unit area at the plate

\( \dot{n}_{A} \) :

Mass transfer rate

hf :

Thermal stratification parameters \( \frac{{hq_{w} }}{{\left( {T_{2} - T_{1} } \right)k}} \)

mf :

Solutal stratification parameters \( \frac{{hq_{m} }}{{\left( {C_{2} - C_{1} } \right)D_{B} }} \)

Rd:

Thermal radiation \( \frac{{16\sigma_{1} T_{1}^{3} }}{{3k_{3} k}} \)

Hs:

Heat source/sink parameter \( \frac{{Q_{h} h^{2} }}{k} \)

\( \bar{E} \) :

Electric field

\( k_{3} \) :

Mean absorption coefficient

\( \rho \) :

Density of the fluid

\( \alpha \) :

Thermal diffusivity \( {k \mathord{\left/ {\vphantom {k {\rho c}}} \right. \kern-0pt} {\rho c}} \)

\( \upsilon \) :

Kinematic viscosity

\( \mu_{e} \) :

Magnetic permeability

\( \mu \) :

Dynamic viscosity

\( \sigma \) :

Electric conductivity of the fluid

\( \sigma_{1} \) :

Stefan–Boltzmann constant

\( \lambda_{1} \) :

Ratio of relaxation to retardation times

\( \lambda_{2} \) :

Relaxation time

\( \lambda \) :

Non-dimensional variable, \( \frac{y}{h} \)

\( \theta \) :

Frequency, \( \omega t \)

\( \tau \) :

Shear stress

\( \tau_{1} \) :

The ratio of nanoparticle heat capacity and the base fluid heat capacity

\( \beta_{0} ,\beta_{1} \) :

Coefficients of thermal expansions

\( \beta_{2} ,\beta_{3} \) :

Coefficients of solutal expansions

\( \eta_{1} \) :

Nonlinear thermal convection parameter \( \frac{{\beta_{1} }}{{\beta_{0} }}\left( {T_{2} - T_{1} } \right) \)

\( \eta_{2} \) :

Nonlinear solutal convection parameter \( \frac{{\beta_{3} }}{{\beta_{2} }}\left( {C_{2} - C_{1} } \right) \)

\( \beta \) :

Deborah number, \( \frac{{\lambda_{2} V_{2} }}{h} \)

\( \xi \) :

Dimensionless axial variable, \( \left( {\frac{{U_{0} }}{{aV_{2} }} - \frac{x}{h}} \right) \)

References

  1. Abraham, B.S. 1953. Laminar flow in channels with porous walls. Journal of Applied Physics 24: 1232–1235.

    MathSciNet  MATH  Google Scholar 

  2. Yuan, S.W. 1956. Further investigation of laminar flow in channels with porous walls. Journal of Applied Physics 27: 267–269.

    MathSciNet  MATH  Google Scholar 

  3. Terrill, R.M., and G.M. Shrestha. 1965. Laminar flow through parallel and uniformly porous walls of different permeability. Zeitschrift für angewandte Mathematik und Physik ZAMP 16: 470–482.

    MathSciNet  MATH  Google Scholar 

  4. Thein, Wah. 1964. Laminar flow in a uniformly porous channel. The Aeronautical Quarterly 15: 299–310.

    MathSciNet  Google Scholar 

  5. Sparrow, E.M., G.S. Beavers, and L.Y. Hung. 1971. Channel and tube flows with surface mass transfer and velocity slip. The Physics of Fluids 14: 1312–1319.

    Google Scholar 

  6. Rao, G.T., and M. Moizuddin. 1980. Steady flow of micropolar incompressible fluid between two parallel porous plants. Defence Science Journal 30 (3): 105–112.

    MathSciNet  MATH  Google Scholar 

  7. Suryaprakasarao, U. 1961. Laminar flow in channels with porous walls in the presence of a transverse magnetic field. Applied Scientific Research, Section B 9: 374–382.

    MATH  Google Scholar 

  8. Shankararaman, Chellam, and R.W. Mark. 1993. Laminar flow with slip in channels with uniformly porous walls. Journal of Hydraulic Engineering 119: 126–132.

    Google Scholar 

  9. Basha, H.T., O.D. Makinde, A. Arora, A. Singh, and R. Sivaraj. 2018. Unsteady flow of chemically reacting nanofluid over a cone and plate with heat source/sink. Defect and Diffusion Forum 387: 615–624.

    Google Scholar 

  10. Sibanda, P., and O.D. Makinde. 2010. On steady MHD flow and heat transfer past a rotating disk in a porous medium with ohmic heating and viscous dissipation. International Journal of Numerical Methods for Heat and Fluid Flow 20: 269–285.

    Google Scholar 

  11. Partha, M.K. 2010. Nonlinear convection in a non-Darcy porous medium. Applied Mathematics and Mechanics 31: 565–574.

    MathSciNet  MATH  Google Scholar 

  12. Sachin, S., P.K. Kameswaran, and P. Sibanda. 2016. Effects of slip on nonlinear convection in nanofluid flow on stretching surfaces. Boundary Value Problems 2016: 2.

    MathSciNet  MATH  Google Scholar 

  13. Makinde, O.D., W.A. Khan, and Z.H. Khan. 2017. Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231: 695–703.

    Google Scholar 

  14. RamReddy, C., and T. Pradeepa. 2017. Influence of convective boundary condition on nonlinear thermal convection flow of a micropolar fluid saturated porous medium with homogeneous-heterogeneous reactions. Frontiers in Heat and Mass. Transfer (FHMT) 8: 1–10.

    Google Scholar 

  15. Mahanthesh, B., B.J. Gireesha, G.T. Thammanna, S.A. Shehzad, F.M. Abbasi, and R.S.R. Gorla. 2018. Nonlinear convection in nano Maxwell fluid with nonlinear thermal radiation: a three-dimensional study. Alexandria Engineering Journal 57: 1927–1935.

    Google Scholar 

  16. Hayat, T., S. Qayyum, S.A. Shehzad, and A. Ahmed. 2017. Magnetohydrodynamic three-dimensional nonlinear convection flow of Oldroyd-B nanoliquid with heat generation/absorption. Journal of Molecular Liquids 230: 641–651.

    Google Scholar 

  17. Vasua, B., Ch. RamReddy, P.V.S.N. Murthy, and R.S.R. Gorla. 2017. Entropy generation analysis in nonlinear convection flow of thermally stratified fluid in saturated porous medium with convective boundary condition. Journal of Heat Transfer 139: 091701.

    Google Scholar 

  18. Makinde, O.D., and I.L. Animasaun. 2016. Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. International Journal of Thermal Sciences 109: 159–171.

    Google Scholar 

  19. Makinde, O.D., and I.L. Animasaun. 2016. Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. Journal of Molecular Liquids 221: 733–743.

    Google Scholar 

  20. Wubshet, I., and O.D. Makinde. 2013. The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate. Computers & Fluids 86: 433–441.

    MathSciNet  MATH  Google Scholar 

  21. Mehmood, K., S. Hussain, and M. Sagheer. 2016. Mixed convection flow with non-uniform heat source/sink in a doubly stratified magnetonanofluid. AIP Advances 6: 065126.

    Google Scholar 

  22. Hussain, T., S. Hussain, and T. Hayat. 2016. Impact of double stratification and magnetic field in mixed convective radiative flow of Maxwell nanofluid. Journal of Molecular Liquids 220: 870–878.

    Google Scholar 

  23. Abbasi, F.M., S.A. Shehzad, T. Hayat, and M.S. Alhuthali. 2016. Mixed convection flow of jeffrey nanofluid with thermal radiation and double stratification. Journal of Hydrodynamics 28: 840–849.

    Google Scholar 

  24. Sarojamma, G., Lakshmi, R.V., Sreelakshmi, K., and K. Vajravelu. 2018. Dual stratification effects on double-diffusive convective heat and mass transfer of a sheet-driven micropolar fluid flow. Journal of King Saud University-Science. https://doi.org/10.1016/j.jksus.2018.05.027.

    Article  Google Scholar 

  25. Singh, K., and M. Kumar. 2015. The effect of chemical reaction and double stratification on MHD free convection in a micropolar fluid with heat generation and ohmic heating. Jordan Journal of Mechanical & Industrial Engineering 9: 1–2.

    Google Scholar 

  26. Makinde, O.D., W.A. Khan, and J.R. Culham. 2016. MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. International Journal of Heat and Mass Transfer 93: 595–604.

    Google Scholar 

  27. Hayat, T., T. Hussain, S.A. Shehzad, and A. Alsaedi. 2014. Thermal and concentration stratifications effects in radiative flow of Jeffrey fluid over a stretching sheet. PLoS One 9: e107858.

    Google Scholar 

  28. Makinde, O.D., T. Chinyoka, and L. Rundora. 2011. Unsteady flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium with asymmetric convective boundary conditions. Computers and Mathematics with Applications 62 (9): 3343–3352.

    MathSciNet  MATH  Google Scholar 

  29. Denno, K.I. 1967. Effects of the induced magnetic field on the in viscid magnetohydrodynamic channel flow”, Iowa State University of Science and Technology, U.S.A. (Ph.D thesis).

  30. Denno, K.I., and A.A. Fouad. 1972. Effects of the induced magnetic field on the magnetohydrodynamic channel flow. IEEE Transactions on Electron Devices 19: 322–331.

    Google Scholar 

  31. Ibrahim, W. 2015. The effect of induced magnetic field and convective boundary condition on MHD stagnation point flow and heat transfer of nanofluid past a stretching sheet. IEEE Transactions on Nanotechnology 14: 178–186.

    Google Scholar 

  32. Alom, M.M., I.M. Rafiqul, and F. Rahman. 2008. Steady heat and mass transfer by mixed convection flow from a vertical porous plate with induced magnetic field, constant heat and mass fluxes. Thammasat International Journal of Science and Technology 13: 1–13.

    Google Scholar 

  33. Ahmed, S., and A.J. Chamkha. 2009. Effects of chemical reaction, Heat and Mass transfer and radiation on MHD flow along a vertical porous wall in the present of induced magnetic field. International Journal of Industrial Mathematics 2 (4): 245–261.

    Google Scholar 

  34. Ali, F.M., R. Nazar, N.M. Arifin, and I. Pop. 2011. MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field. Applied Mathematics and Mechanics 32: 409–418.

    MathSciNet  MATH  Google Scholar 

  35. Ali, F.M., R. Nazar, N.M. Arifin, and I. Pop. 2011. MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field. Heat and Mass Transfer 47: 155–162.

    MATH  Google Scholar 

  36. Sheikholeslami, M., Q.M. Zia, and R. Ellahi. 2016. Influence of induced magnetic field on free convection of nanofluid considering Koo–Kleinstreuer–Li (KKL) correlation. Applied Sciences 6: 324.

    Google Scholar 

  37. Sheikholeslami, M., and H.B. Rokni. 2017. Nanofluid two phase model analysis in existence of induced magnetic field. International Journal of Heat and Mass Transfer 107: 288–299.

    Google Scholar 

  38. Ganesan, P., and G. Palani. 2004. Finite difference analysis of unsteady natural convection MHD flow past an inclined plate with variable surface heat and mass flux. International Journal of Heat and Mass Transfer 47: 4449–4457.

    MATH  Google Scholar 

  39. Cheng, C.Y. 2006. Natural convection heat and mass transfer of non-Newtonian power law fluids with yield stress in porous media from a vertical plate with variable wall heat and mass fluxes. International Communications in Heat and Mass Transfer 33: 1156–1164.

    Google Scholar 

  40. Abbasi, F.M., S.A. Shehzad, T. Hayat, A. Alsaedi, and M.A. Obid. 2015. Influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nanofluid. AIP Advances 5: 037111.

    Google Scholar 

  41. Hayat, T., I. Ullah, T. Muhammad, A. Alsaedi, and S.A. Shehzad. 2016. Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions. Chinese Physics B 25: 074701.

    Google Scholar 

  42. Hussain, T., S. Hussain, and T. Hayat. 2018. Impact of magnetic field in radiative flow of Casson nanofluid with heat and mass fluxes. Thermal Science 22: 137–145.

    Google Scholar 

  43. Gandluru, S., D.R.V. Prasad Rao, and O.D. Makinde. 2018. Hydromagnetic-oscillatory flow of a nanofluid with Hall effect and thermal radiation past vertical plate in a rotating porous medium. Multidiscipline Modelling in Materials and Structures 14 (2): 360–386.

    Google Scholar 

Download references

Acknowledgements

One of the authors (A.R) is thankful to the DRDO, Government of India for providing financial support as SRF (No. DIAT/F/Acad (PhD)/1613/F-15-52-09).

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Corresponding author

Correspondence to Odelu Ojjela.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, A., Ojjela, O. & Kambhatla, P.K. The combined effects of induced magnetic field, thermophoresis and Brownian motion on double stratified nonlinear convective-radiative Jeffrey nanofluid flow with heat source/sink. J Anal 28, 503–532 (2020). https://doi.org/10.1007/s41478-019-00187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-019-00187-z

Keywords

Mathematics Subject Classification

Navigation