Skip to main content
Log in

First-Principle Investigation of the Mechanical and Transport Properties of the Zigzag Carbon Nanotubes (n, 0) (n = 4, 5) with Stone–Wales Defects

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The mechanical, electrical transport and electronic properties of perfect and with Stone–Wales defect small zigzag carbon nanotubes (n, 0) (n = 4, 5) were calculated using the combination of density functional theory and non-equilibrium Green function as well as tight binding methods. It is found that Stone–Wales defects can open the band gap of (5, 0) CNTs but not (4, 0) ones. Moreover, the breaking of rotational symmetry of CNTs by Stone–Wales results in falling new charge states for those delocalized electrons between the Fermi levels of the two electrodes for CNTs (5, 0). The Young’s modulus of the perfect and the Stone–Wales defected for different length, varying from 24.31 to 96.77 Å, was also investigated by the molecular dynamics method. It was found that despite perfect CNTs, with Stone–Wales defect tubes see a slight decrease in Young’s modulus by increasing the length. All in all, the effect of Stone–Wales defects on Young’s modulus of understudy nanotubes outweighs the size effects for Young’s modulus through small carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkhateb H, Al-Ostaz A, Cheng A (2008) Geometric and simulation parameter effects on elastic moduli of multi-walled carbon nanotubes using molecular dynamics approach. In: Proceedings of the 23rd technical conference of American society of composites (CD-ROM), Memphis, TN

  • Arjmand M, Shokuhfar A, Sarabi MA (2010) Effect of unit cell length on Young’s modulus of zigzag single walled carbon nanotubes. Olomouc Czech Repub Eur 10:12–14

    Google Scholar 

  • Azadi S, Moradian R, Shafaee AM (2010) The effect of Stone–Wales defect orientations on the electronic properties of single-walled carbon nanotubes. Comput Mater Sci 49(3):699–703

    Article  Google Scholar 

  • Badehian H, Gharbavi K (2017) Transport and mechanical properties of doublewalled carbon nanotubes as a function of interwall distance. Mol Cryst Liq Cryst 650:138–146

    Article  Google Scholar 

  • Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  Google Scholar 

  • Banhart F (1999) Irradiation effects in carbon nanostructures. Rep Prog Phys 62:1181–1221

    Article  Google Scholar 

  • Bellido EP, Seminario JM (2012) Molecular dynamics simulations of ion-bombarded graphene. J Phys Chem C 116(6):4044–4049

    Article  Google Scholar 

  • Berahman M, Sanaee M, Ghayour R (2014) A theoretical investigation on the transport properties of overlapped graphene nanoribbons. Carbon 75:411–419

    Article  Google Scholar 

  • Charlier JC (2002) Defects in carbon nanotube. Acc Chem Res 35:1063–1069

    Article  Google Scholar 

  • Chen YR, Weng CI, Sun SJ (2008) Electronic properties of zigzag and armchair carbon nanotubes under uniaxial strain. J Appl Phys 104:114310-1–114310-7

    Google Scholar 

  • Das S (2013) A review on carbon-nano tubes—a new era of nanotechnology. Int J Emerg Technol Adv Eng 3:774–783

    Google Scholar 

  • Datta S (1997) Electronic transport in mesoscopic systems. Cambridge studies in semiconductor physics and microelectronic engineering. Cambridge University Press, Cambridge

    Google Scholar 

  • Datta S (2004) Quantum transport: atom to transistor. Cambridge University Press, Cambridge

    Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891

    Article  Google Scholar 

  • Dumitrica T, Belytschko T, Yakobson BI (2003) Bond-breaking bifurcation states in carbon nanotube fracture. J Chem Phys 118:9485–9488

    Article  Google Scholar 

  • Fan CW et al (2005) A finite element approach for estimation of Young’s modulus of single-walled carbon nanotubes. In: The third Taiwan–Japan workshop on mechanical and aerospace engineering, Hualian, Taiwan

  • Ganin AA (2013) Length dependence of band structure in carbon nanotubes of ultra small diameter. Proc Int Conf Nanomater Appl Prop 2:03NCNN35-1–03NCNN35-4

    Google Scholar 

  • Gharbavi K, Badehian H (2014) Structural and electronic properties of armchair (7, 7) carbon nanotubes using DFT. Comput Mater Sci 82:159–164

    Article  Google Scholar 

  • Guo GY et al (2004) Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys Rev B 69:205416–1–205416-11

    Google Scholar 

  • Hedström S et al (2016) Non-equilibrium Green’s function calculations with TranSIESTA—a tutorial. Yale University, Department of Chemistry

  • Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility. Nat Nanotechnol 2:207–208

    Article  Google Scholar 

  • Huang B et al (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for nano-scale molecule sensor. J Phys Chem C 35:13442–13446

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Iijima S, Ichihashi T, Ando Y (1992) Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356:776

    Article  Google Scholar 

  • Iyakutti K, Rajarajeswari M, Dharma-wardana MWC (2008) The interaction of nitrogen molecules with (4, 0) single-walled carbon nanotube: electronic and structural effects. Nanotechnology 19:185704–185707

    Article  Google Scholar 

  • Javey A, Kong J (2009) Carbon nanotube electronics. Springer, New York

    Google Scholar 

  • Ji Y, Lin YJ, Buldum A (2009) An investigation of buckypapers Young’s modulus utilizing nanoscale modeling and molecular dynamics simulation. In: China 4th IEEE international conference on nano/micro engineered and molecular systems, pp 771–774

  • Kawasaki S, Jin F, Takata T (2011) High dispersion power of cardo-typed fluorene moieties on carbon fillers. InTech China, p 20

  • Kim YH, Byun YM (2009) Diameter dependence of charge transport across carbon nanotube-metal contacts from first principles. J Korean Phys Soc 55:299–303

    Article  Google Scholar 

  • Krishnan A et al (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58(20):14013–14019

    Article  Google Scholar 

  • Lu Q, Bhattacharya B (2005) Effect of randomly occurring Stone–Wales defects on mechanical properties of carbon nanotubes using atomistic simulation. Nanotechnology 16:555–566

    Article  Google Scholar 

  • Lu X, Chen Z (2005) Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes. Chem Rev 105:3643–3696

    Article  Google Scholar 

  • Ma J, Yuan RK (1998) Electronic and optical properties of finite zigzag carbon nanotubes with and without Coulomb interaction. Phys Rev B 57:9343–9348

    Article  Google Scholar 

  • Mohammadian M (2013) Predicting the Young’s modulus of single-walled carbon nanotube using modal analysis based on finite element method. World Appl Sci J 26:360–365

    Google Scholar 

  • Mohammadizadeh MR (2006) Superconductivity in an ultra-small radius SWCNT. Phys Status Solidi C 3:3126–3129

    Article  Google Scholar 

  • Movlarooy T et al (2010) Optical absorption and electron energy loss spectra of single-walled carbon nanotubes. Comput Mater Sci 49:450–456

    Article  Google Scholar 

  • Nardelli MB, Yakobson BI, Bernholc J (1998a) Brittle and ductile behavior in carbon nanotubes. Phys Rev Lett 81:4656

    Article  Google Scholar 

  • Nardelli MB, Yakobson BI, Bernholc J (1998b) Mechanism of strain release in carbon nanotube. Phys Rev B 57:4277

    Article  Google Scholar 

  • Nizam R et al (2011) Calculating electronic structure of different carbon nanotubes and its affect on band gap. Int J Sci Technol 1(4):153–162

    Google Scholar 

  • Ouyang M et al (2001) Atomically resolved single-walled carbon nanotube intramolecular junctions. Science 291:97–100

    Article  Google Scholar 

  • Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley, London

    Google Scholar 

  • Pozrikidis C (2009) Effect of the Stone–Wales defect on the structure and mechanical properties of single-wall carbon nanotubes in axial stretch and twist. Arch Appl Mech 79:113–123

    Article  MATH  Google Scholar 

  • Riberio AN, Macedo CA (2010) Anisotropic tight-binding model applied to zigzag ultra-small nanotubes. Eur Phys J B 74:527–533

    Article  Google Scholar 

  • Saether E (2003) Transverse mechanical properties of carbon nanotube crystals. Part II: sensitivity to lattice distortions. Compos Sci Technol 63:1551–1559

    Article  Google Scholar 

  • Sankar PAG, Kumar KU (2011) Mechanical and electrical properties of single walled carbon nanotubes: a computational study. Eur J Sci Res 60(3):324–340

    Google Scholar 

  • Sano N et al (2002) Viability of sub-0.4-nm diameter carbon nanotubes. Phys Rev B 66:113403–1–113403-4

    Google Scholar 

  • Slater JC, Koster GF (1954) Simplified LCAO method for the periodic potential problem. Phys Rev J Arch 94:1498–1524

    Article  MATH  Google Scholar 

  • Soler JM et al (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779

    Article  Google Scholar 

  • Stokbro K et al (2003) TranSIESTA: a spice for molecular electronics. Ann N Y Acad Sci 1006:212–226

    Article  Google Scholar 

  • Troche KS et al (2007) Structural and electronic properties of zigzag carbon nanotubes filled with small fullerenes. J Phys Condens Matter 19:236222

    Article  Google Scholar 

  • Wang Z et al (2009) Geometry-dependent nonlinear decrease of the effective Young’s modulus of single-walled carbon nanotubes submitted to large tensile loadings. Fuller Nanotub Carb Nanostruct 17:1–10

    Article  Google Scholar 

  • Yakobson BI, Avouris P (2001) Mechanical properties of carbon nanotubes. Top Appl Phys 80:287–327

    Article  Google Scholar 

  • Zang JL et al (2009) A comparative study of Young’s modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations. Comput Mater Sci 46:621–625

    Article  Google Scholar 

  • Zhao X et al (2004) Smallest carbon nanotube is 3 Å in diameter. Phys Rev Lett 92:125502–1–125502-3

    Google Scholar 

  • Zhou LG, Shi S-Q (2003) Formation energy of Stone–Wales defects in carbon nanotubes. Appl Phys Lett 83(6):1222–1224

    Article  Google Scholar 

  • Zhou O et al (1994) Defects in carbon nanostructures. Science 263:1744–1747

    Article  Google Scholar 

  • Zhou X, Zhou J, Yang ZO (2000) Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-bond theory. Phys Rev B 62:13692–13696

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojat Allah Badehian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badehian, H.A., Gharbavi, K. & Ghazi, S.M. First-Principle Investigation of the Mechanical and Transport Properties of the Zigzag Carbon Nanotubes (n, 0) (n = 4, 5) with Stone–Wales Defects. Iran J Sci Technol Trans Sci 43, 1303–1309 (2019). https://doi.org/10.1007/s40995-018-0595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-018-0595-8

Keywords

Navigation