Skip to main content
Log in

Alteration of Strain Distribution in Distal Tibia After Triple Arthrodesis: Experimental and Finite Element Investigations

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Arthrodesis, or fusion of subtalar joints (STJs), is a well-accepted and a routine treatment in the end stage of ankle injuries or disorder, such as arthritis or fractures. Arthrodesis can restore daily life function quickly at the expense of limiting joint motion. A triple arthrodesis (TA) consists of the surgical fusion of the talocalcaneal (TC), talonavicular (TN), and calcaneocuboid (CC) joints in the foot. This study aimed at investigating the effects of TA on strain distribution around tibia near the ankle joint. A finite element (FE) model, generated using computed tomography (CT) images of the human ankle, was then used to estimate stress distribution on the ankle joint surface. Axial load was applied to a human cadaveric ankle before and after TA, and load patterns were determined in various anatomical positions by measuring strain distribution around the tibia. Therefore, the effects of fusion were investigated by comparing strain distribution obtained from experiment and from FE model before and following to fusion. A good agreement between the experiment and FE, for the mean value of experimentally measured strains per the strains determined by FEM was observed (1.4 ± 0.32 before TA, and 1.51 ± 0.49 after TA). Moreover, a well-accepted point-by-point comparison between FE results and experimentally measured strains was observed with a good correlation coefficient (r = 0.94). Results of this study showed that: (1) there was a significant difference in strain magnitude and strain distribution around the tibia before and after TA; (2) the strain and stress were more uniformly distributed after fusion; and (3) the peak strain and stress values were shifted to the lateral and anterolateral portion of the tibia after the fusion. Results of this investigation showed that STJs fusion reduces the average values of strains around the cortical bone through changing the pattern of load transmission at the ankle joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dettwylera, M., Stacoffa, A., Inès, A., Quervaina, K., & Stüssia, E. (2004). Modelling of the ankle joint complex. Reflections with regards to ankle prostheses. Journal of Foot and Ankle Surgery, 10, 109–119.

    Article  Google Scholar 

  2. Ajai, S. (2011). A review of the STAR prosthetic system and the biomechanical considerations in total ankle replacements. Journal of Foot and Ankle Surgery, 17, 64–67.

    Article  Google Scholar 

  3. Kura, H., Kitaoka, H. B., Luo, Z., & An, K. (1998). Measurement of surface contact area of the ankle joint. Journal of Clinical Biomechanics, 13, 365–370.

    Article  Google Scholar 

  4. Tochigi, Y., Rudert, M. J., Saltzman, C. L., Amendoula, A., & Brown, T. D. (2006). Contribution of articular surface geometry to ankle stabilization. Journal of Bone & Joint Surgery, 88-A, 2704–2713.

    Article  Google Scholar 

  5. Chitsazan, A., Rouhi, G., Pezeshki, S., Abbasi, M., & Tavakoli, A. H. (2015). Assessment of stress distribution in ankle joint: simultaneous application of experimental and finite element methods. Journal of International Experimental and Computational Biomechanics, 3(1), 45–61.

    Article  Google Scholar 

  6. Kakkar, R., & Siddique, M. S. (2011). Stresses in the ankle joint and total ankle replacement design. Journal of Foot and Ankle Surgery, 17, 58–63.

    Article  Google Scholar 

  7. Mononen, M. E., Tanska, P., Isaksson, H., & Korhonen, R. K. (2016). A Novel method to simulate the progression of collagen degeneration of cartilage in the knee: data from the osteoarthritis initiative. Journal of Scintific Report. doi:10.1038/srep21415.

    Google Scholar 

  8. Campbell W. C., Crenshaw, A. H. (1987). Arthroplasty of ankle and knee. Campbell’s operative orthopedics. St. Lois Mosby, 1145–50. ISBN: 0801610656 9780801610653.

  9. Beyaert, C., Sirveaux, F., Paysant, J., Mole, D., & Andre, J. M. (2004). The effect of tibio-talar arthrodesis on foot kinematics and ground reaction force progression during walking. Journal of Gait & Posture, 20, 84–91.

    Article  Google Scholar 

  10. Thomas, R., Daniels, T. R., & Parker, K. (2006). Gait analysis and functional outcomes following ankle arthrodesis for isolated ankle arthritis. American Journal of Bone and Joint Surgery, 88, 526–535.

    Google Scholar 

  11. Henne, T. D., & Anderson, J. G. (2002). Total ankle arthroplasty: a historical perspective. Journal of Foot and Ankle Clinics, 7, 695–702.

    Article  Google Scholar 

  12. Saltzman, C. L. (2000). Perspective on total ankle replacement. Journal of Foot and Ankle Clinics, 5, 761–775.

    Google Scholar 

  13. Button, G., & Pinney, S. (2004). A meta-analysis of outcome rating scales in foot and ankle surgery: is there a valid, reliable, and responsive system? Journal of Foot & Ankle International, 25, 521–525.

    Article  Google Scholar 

  14. Herron, M. L. (2006). A review of outcome measures for the ankle and hindfoot. Journal of Foot and Ankle Surgery, 12, 161–167.

    Article  Google Scholar 

  15. Naal, F. D., Impellizzeri, F. M., & Rippstein, P. F. (2010). Which are the most frequently used outcome instruments in studies on total ankle arthroplasty? Journal of Clinical Orthopaedics and Related Research, 468, 815–826.

    Article  Google Scholar 

  16. Bonasia, D. E., Dettoni, F., Femino, J. E., Phisitkul, P., Germano, M., & Amendola, A. (2010). Total ankle replacement: Why, when and how? Journal of Iowa Orthopeic, 30, 119–130.

    Google Scholar 

  17. Ryerson, E. W. (2008). Arthrodesing operations on the feet. Journal of Clinical Orthopaedics and Related Research, 466(1), 5–14.

    Article  Google Scholar 

  18. Knupp, M., Stufkens, S. A., & Hintermann, B. (2011). Triple arthrodesis. Journal of Foot Ankle Clinic, 16(1), 61–67.

    Article  Google Scholar 

  19. Muir, D. C., Amendola, A., & Saltzman, C. L. (2002). Long-term outcome of ankle arthrodesis. Journal of Foot and Ankle Clinics, 7(4), 703–708.

    Article  Google Scholar 

  20. Coester, L. M., Saltzman, C. L., Leupold, J., & Pontarelli, W. (2001). Long-term results following ankle arthrodesis for post-traumatic arthritis. Journal of Bone and Joint Surgery, 83, 219–228.

    Article  Google Scholar 

  21. Cordey, J., & Gautier, E. (1999). Strain gauges used in the mechanical testing of bones Part II: “In vitro” and “in vivo” technique. Journal of Injury, 30, SA14–SA20.

    Article  Google Scholar 

  22. O’Doherty, D. M., Butler, S. P., & Goodship, A. E. (1995). Stress protection due to external fixation system. Journal of Biomechanics, 28(5), 575–586.

    Article  Google Scholar 

  23. Burke, N. G., Moran, C., Din, R., Walsh, J., & Quinlan, W. R. (2010). An unusual cause of pain post ankle arthrodesis in patients with rheumatoid arthritis. Journal of The Foot, 20, 81–84.

    Article  Google Scholar 

  24. Beaudoin, A. J., Fiore, S. M., Krause, W. R., & Adelaar, R. S. (1991). Effect of isolated talocalcaneal fusion on contact in the ankle and talonavicular joints. Journal of Foot Ankle, 21(1), 19–25.

    Article  Google Scholar 

  25. Anderson, D. D., Goldsworthy, J. K., Li, W., Rudert, M. J., Tochigi, Y., & Brown, T. D. (2007). Physical validation of a patient-specific contact finite element model of the ankle. Journal of Biomechanics, 40, 1662–1669.

    Article  Google Scholar 

  26. Corazza, F., Stagni, R., Castelli, V. P., & Leardini, A. (2005). Articular contact at the tibiotalar joint in passive flexion. Journal of Biomechanics, 38, 1205–1212.

    Article  Google Scholar 

  27. Chitsazan ,A., Rouhi, G., Pezeshki, S., Abbasi, M., Tavakoli, A. H. (2012). Strain distribution on tibia surface during gait cycle: experimental investigation, ProceedingCSB-SCB. Conference.

  28. Todd, O. M., Rudert, M. J., Koos, D. C., Pedersen, D. R., Baer, T. E., Tochigi, Y., et al. (2006). Contact stress transients during functional loading of ankle step-off incongruities. Journal of Biomechanics, 39, 617–626.

    Article  Google Scholar 

  29. Sugiyama, T., Meakin, L. B., Browne, W. J., Galea, G. L., Price, J. S., & Lanyon, L. E. (2012). Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. Journal of Bone Miner Research, 27(8), 1784–1793.

    Article  Google Scholar 

  30. Perusek, P. G., Davis, L. B., Sferra, J. J., Courtney, C. A., & D’Andrea, E. S. (2001). An extensometer for global measurement of bone strain suitable for use in vivo in humans. Journal of Biomechanics, 34, 385–391.

    Article  Google Scholar 

  31. Gautier, E., & Cordey, J. (1999). Strain gauges used in the mechanical testing of bones Part I: Theoretical and technical aspects. Journal of Injury, 30, 7–13.

    Google Scholar 

  32. Levangie, P. K., & Norkin, C. C. (2011). Joint structure and function: A comprehensive analysis (pp. 440–478). Philadelphia: Davis Company. ISBN 978-0-8036-2362-0.

    Google Scholar 

  33. El-Khoury, G. Y., Alliman, K. J., & Lundberg, H. J. (2004). Cartilage thickness in cadaveric ankles: Measurement with double-contrast multi-detector row CT arthrography versus MR imaging. Journal of Radiology, 233, 768–773.

    Article  Google Scholar 

  34. Li, W., Anderson, D. D., Goldsworthy, J. K., Marsh, J. L., & Brown, T. D. (2008). Patient-specific finite element analysis of chronic contact stress exposure after intra-articular fracture of the tibial plafond. Journal of Orthopedic Research, 26, 1039–1045.

    Article  Google Scholar 

  35. Anderson, A. E., Ellis, B. J., Maas, S. A., & Weiss, J. A. (2010). Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip. Journal of Biomechanics, 43(7), 1351–1357.

    Article  Google Scholar 

  36. Tao, K., Wang, D., Wang, C., Wang, X., Liu, A., Nester, C. J., et al. (2009). An in vivo experimental validation of a computational model of human Foot. Journal of Bionic Engineering, 6, 387–397.

    Article  Google Scholar 

  37. Chen, W. P., Tang, F. T., & Ju, C. W. (2001). Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis. Journal of Clinical Biomechanics, 16(7), 614–620.

    Article  Google Scholar 

  38. Gíslason, M. K., Stansfield, B., & Nash, D. H. (2010). Finite element model creation and stability considerations of complex biological articulation: The human wrist joint. Journal of Medical Engineering and Physics, 32(5), 523–531.

    Article  Google Scholar 

  39. Asgari, S. A., Hamouda, A. M. S., Mansor, J. B., Singh, H., Mahdi, E., Wirza, R., et al. (2004). Finite element modeling of a generic stemless hip implant design in comparison with conventional hip implants. Journal of Finite Element in Analysis and Design, 40, 2027–2047.

    Article  Google Scholar 

  40. Speirs, A. D., Heller, M. O., Duda, G. N., & Taylor, W. R. (2007). Physiologically based boundary conditions in finite element modelling. Journal of Biomechanics, 40(10), 2318–2323.

    Article  Google Scholar 

  41. Taylor, W. R., Roland, E., Ploeg, H., Hertig, D., Klabunde, R., Warner, M. D., et al. (2002). Determination of orthotropic bone elastic constants using FEA and modal analysis. Journal of Biomechanics, 35(6), 767–773.

    Article  Google Scholar 

  42. Ionescu, I., Conway, T., Schonning, A., Almutairi, M., Nicholson, D. W. (2003). Solid modeling and static finite elemet analysis of the human tibia. Conference Bioengineering June 2529 Florida.

  43. Hintermann, B. (2004). Total ankle arthroplasty: historical overview current concepts and future perspectives (pp. 25–42). Wien, NY: Springer. ISBN 978-3-211-27254-1.

    Google Scholar 

  44. Ragone, J. G. (2006). Finite element simulation of the MRTA test of a human tibia. Thesis for the degree of M.Sc in Biomedical Engineering and Sciences (BMES). Virginia polytechnic institute and state University. https://theses.lib.vt.edu/theses/available/etd-04202006-135139/unrestricted/Ragone_thesis_final.pdf

  45. Anderson, D. D., Deshpande, B. R., Daniel, T. E., & Baratz, M. E. (2005). A three-dimensional finite element model of the radiocarpal joint: distal radius fracture step-off and stress transfer. Journal of Iowa Orthopaedics, 25, 108–117.

    Google Scholar 

  46. Beumer, A., Hemert, W. L. W., Swierstra, B. A., Jasper, L. E., & Belkoff, S. M. (2003). A biomechanical evaluation of the tibiofibular and tibiotalar ligaments of the ankle. Journal of Foot & Ankle International, 24(5), 426–429.

    Article  Google Scholar 

  47. Anderson, A. E., Ellis, B. J., Maas, S. A., Peters, C. L., & Weiss, J. A. (2008). Validation of finite element predictions of cartilage contact pressure in the human hip joint. Journal of Biomechanics, 130(5), 1–25.

    Google Scholar 

  48. Young, W. C., & Budynas, R. G. (2000). Roark’s formulas for stress and strain (7th ed.). New York: McGraw-Hill.

    Google Scholar 

  49. Cordey, J., & Gautier, E. (1999). Strain gauges used in the mechanical testing of bones Part III Strain analysis, graphic determination of the neutral axis. Journal of Injury, 30, 21–25.

    Article  Google Scholar 

  50. Cristofolini, L., Conti, G., Juszczyk, M., Cremonini, S., VanSintJan, S., & Viceconti, M. (2010). Structural behaviour and strain distribution of the long bones of the human lower limbs. Journal of Biomechanics, 40, 826–835.

    Article  Google Scholar 

  51. Gíslason, M. K., Stansfield, B., & Nash, D. H. (2010). Finite element model creation and stability considerations of complex biological articulation: The human wrist joint. Journal of Medical Engineering & Physics, 32, 523–531.

    Article  Google Scholar 

  52. Easley, M. E., Vertullo, C. J., Urban, W. C., & Nunley, J. A. (2002). Total ankle arthroplasty. Journal of American Academy of Orthopaedic Surgeons, 10(3), 157–167.

    Article  Google Scholar 

  53. Alvarez, R. (1996). Stress fracture of the tibia following extensive hindfoot and ankle arthrodesis: A report of three cases. Journal of Foot and Ankle International, 17(9), 583–584.

    Article  Google Scholar 

  54. Groot, I. B., Reijman, M., Luning, H. A. F., & Verhaar, J. A. N. (2008). Long-term results after a triple arthrodesis of the hindfoot: function and satisfaction in 36 patients. Journal of International Orthopaedics (SICOT), 32, 237–241.

    Article  Google Scholar 

  55. Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83.

    Article  Google Scholar 

  56. Hollander, M., Wolfe, D. A., Chicken, E. (1997). Nonparametric Statistical Methods (1st ed.) (pp. 27–33 & 68–75). New York: Wiley.

  57. Goh, J. C., Mech, A. M., Lee, E. H., Ang, E. J., Bayon, P., & Pho, R. W. (1992). Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection. Journal of Clinical Orthopaedics Related Research, 279, 223–228.

    Google Scholar 

  58. Peacock, M., Buckwalter, K. A., Persohn, S., Hangartner, T. N., Econs, M. J., & Hui, S. (2009). Race and Sex Differences in Bone Mineral Density and Geometry at the Femur. Journal of Bone, 45(2), 218–225.

    Article  Google Scholar 

  59. Capozza, R. F., Feldman, S., Mortarino, P., Reina, P. S., Schiessl, H., Rittweger, J., et al. (2010). Structural analysis of the human tibia by tomographic (pQCT) serial scans. Journal of Anatomy, 216(4), 470–481.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Iran National Science and Foundation (INSF) under Grant No. 91004528, Iranian tissue bank center (ITB), and Amirkabir University of Technology. The authors also would like to acknowledge Dr. S. Pezeshki(orthopedic surgeon) for the arthrodesis surgery, and the help in medical imaging given by Mrs. S. Serajzadeh (technologist), of the department of imaging, Shafa Yahyaian Hospital, Iran University of Medical Sciences. Dr. Z. Ghayoumi’s assistance on the statistical analyses is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Rouhi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitsazan, A., Herzog, W., Rouhi, G. et al. Alteration of Strain Distribution in Distal Tibia After Triple Arthrodesis: Experimental and Finite Element Investigations. J. Med. Biol. Eng. 38, 469–481 (2018). https://doi.org/10.1007/s40846-017-0330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0330-5

Keywords

Navigation