Skip to main content
Log in

Understanding Hip Fracture by QCT-Based Finite Element Modeling

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Hip fracture has become a common health problem among old people. Understanding hip fracture mechanics is the first step to effectively prevent hip fracture. The objective of this study was to investigate the combined effect of reversed stress/strain patterns in femur (during single-leg stance and sideways fall) and the inhomogeneous material properties of femur bone. We constructed 40 subject-specific femur finite element models from medical quantitative computed tomography and used them to identify high risk regions in the femur induced by the two loading configurations. The obtained results showed that compared to the single-leg stance, in the sideways fall the highest stress and strain occurred at different locations; and the tensile-compressive stress status was also completely reversed. Previous studies have found that a bone has different strength at different anatomic sites, and at the same site it has different compressive and tensile strength. Our study suggested that, in addition to the large magnitude of impact force induced in falling, the abnormal stress/strain patterns produced by the non-habitual loading condition in falling may be another external contributor to hip fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Resnick, N. M., & Greenspan, S. L. (1989). ‘Senile’ osteoporosis reconsidered. JAMA, 261, 1025–1029.

    Article  Google Scholar 

  2. Keyak, J. H., Rossi, S. A., Jones, K. A., Les, C. M., & Skinner, H. B. (2001). Prediction of fracture location in the proximal femur using finite element models. Medical Engineering & Physics, 23, 657–664.

    Article  Google Scholar 

  3. Dragomir-Daescu, D., Op Den Buijs, J., McEligot, S., Dai, Y. F., Entwistle, R. C., Salas, C., et al. (2011). Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Annals of Biomedical Engineering, 39(2), 742–755.

    Article  Google Scholar 

  4. Mirzaei, M., Keshavarzian, M., & Naeini, V. (2014). Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method. Bone, 64, 108–114.

    Article  Google Scholar 

  5. Bessho, M., Ohnishi, I., Matsumoto, T., Ohashi, S., Matsuyama, J., Tobita, K., et al. (2009). Prediction of proximal femur strength using a CT-based nonlinear finite element method: Differences in predicted fracture load and site with changing load and boundary conditions. Bone, 45, 226–231.

    Article  Google Scholar 

  6. Koivumäki, J. E. M., Thevenot, J., Pulkkinen, P., Kuhn, V., Link, T. M., Eckstein, F., et al. (2012). CT-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone, 50, 824–829.

    Article  Google Scholar 

  7. Michelson, J. D., Myers, A., Jinnah, R., Cox, Q., & Van Natta, M. (1995). Epidemiology of hip fractures among the elderly: Risk factors for fracture type. Clinical Orthopaedics and Related Research, 311, 129–135.

    Google Scholar 

  8. Keyak, J. H., Meagher, J. M., Skinner, H. B., & Mote, C. D., Jr. (1990). Automated three-dimensional finite element modelling of bone: A new method. Journal of Biomedical Engineering, 12, 389–397.

    Article  Google Scholar 

  9. Keaveny, T. M., Borchers, R. E., Gibson, L. J., & Hayes, W. C. (1993). Trabecular bone modulus and strength can depend on specimen geometry. Journal of Biomechanics, 26, 991–1000.

    Article  Google Scholar 

  10. Les, C. M., Keyak, J. H., Stover, S. M., Taylor, K. T., & Kaneps, A. J. (1994). Estimation of material properties in the equine metacarpus with use of quantitative computed tomography. Journal of Orthopaedic Research, 12, 822–833.

    Article  Google Scholar 

  11. Keller, T. S. (1994). Predicting the compressive mechanical behavior of bone. Journal of Biomechanics, 27, 1159–1168.

    Article  Google Scholar 

  12. Yosibash, Z., Tal, D., & Trabelsi, N. (2010). Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 2707–2723.

    Article  MathSciNet  MATH  Google Scholar 

  13. Keyak, J. H., Rossi, S. A., Jones, K. A., & Skinner, H. B. (1997). Prediction of femoral fracture load using automated finite element modeling. Journal of Biomechanics, 31(2), 125–133.

    Article  Google Scholar 

  14. Reilly, D. T., & Burstein, A. H. (1975). The elastic and ultimate properties of compact bone tissue. Journal of Biomechanics, 8, 393–405.

    Article  Google Scholar 

  15. Yoshikawa, T., Turner, C. H., Peacock, M., Slemenda, C. W., Weaver, C. M., Teegarden, D., et al. (1994). Geometric structure of the femoral neck measured using dual-energy x-ray absorptiometry. Journal of Bone and Mineral Research, 9(7), 1053–1064.

    Article  Google Scholar 

  16. Nishiyama, K. K., Gilchrist, S., Guy, P., Cripton, P., & Boyd, S. K. (2013). Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration. Journal of Biomechanics, 46, 1231–1236.

    Article  Google Scholar 

  17. Robinovitch, S. N., Hayes, W. C., & McMahon, T. A. (1991). Prediction of femoral impact forces in falls on the hip. Journal of Biomechanical Engineering, 113, 366–374.

    Article  Google Scholar 

  18. Kim, J. S., Park, T. S., Park, S. B., Kim, J. S., Kim, I. Y., & Kim, S. I. (2000). Measurement of femoral neck anteversion in 3D. Part 1: 3D imaging method. Med. Biol. Eng. Comput., 38, 603–609.

    Article  Google Scholar 

  19. Atilla, B., Oznur, A., Caglar, O., Tokgozoglu, M., & Alpaslan, M. (2007). Osteometry of the femora in Turkish individuals: A morphometric study in 114 cadaveric femora as an anatomic basis of femoral component design. Acta Orthop. Traumatol. Turc., 41, 64–68.

    Google Scholar 

  20. Sariali, E., Mouttet, A., Pasquier, G., & Durante, E. (2009). Three-dimensional hip anatomy in osteoarthritis: Analysis of the femoral offset. Journal of Arthroplasty, 24, 990–997.

    Article  Google Scholar 

  21. Kheirollahi, H., & Luo, Y. (2015). Assessment of hip fracture risk using cross-section strain energy by QCT-based finite element modeling. BioMed Research International, 2015, Article ID 413839.

  22. Kheirollahi, H., & Luo, Y. (2015). Identification of high stress and strain regions in proximal femur during single-leg stance and sideways fall using QCT-based finite element model. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 9(8), 541–548.

    Google Scholar 

  23. Nikander, R., Kannus, P., Dastidar, P., Hannula, M., Harrison, L., Cervinka, T., et al. (2009). Targeted exercises against hip fragility. Osteoporosis International, 20, 1321–1328.

    Article  Google Scholar 

  24. Abrahamsen, B., van Staa, T., Ariely, R., Olson, M., & Cooper, C. (2009). Excess mortality following hip fracture: A systematic epidemiological review. Osteoporosis International, 20, 1633–1650.

    Article  Google Scholar 

  25. Wolff, J. (1986). The law of bone remodeling (translation of the German 1892 edition). Berlin: Springer.

    Google Scholar 

  26. Frost, H. M. (1994). Wolff’s law and bone’s structural adaptations to mechanical usage: An overview for clinicians. The Angle Orthodontist, 64, 175–188.

    Google Scholar 

  27. Røhl, L., Larsen, E., Linde, F., Odgaard, A., & Jørgensen, J. (1991). Tensile and compressive properties of cancellous bone. Journal of Biomechanics, 24, 1143–1149.

    Article  Google Scholar 

  28. Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37, 27–35.

    Article  Google Scholar 

  29. de Bakker, P. M., Manske, S. L., Ebacher, V., Oxland, T. R., Cripton, P. A., & Guy, P. (2009). During sideways falls proximal femur fractures initiate in the superolateral cortex: Evidence from high-speed video of simulated fractures. Journal of Biomechanics, 42, 1917–1925.

    Article  Google Scholar 

Download references

Acknowledgements

The reported research was supported by the Natural Sciences and Engineering Research Council (NSERC) and Research Manitoba of Canada, which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhua Luo.

Ethics declarations

Conflict of interest

There is no conflict of interest involved in the reported study or in the published results.

Ethical approval

The QCT images used in this study were acquired from Health Science Centre located at Winnipeg under an Ethical Approval issued by the Research Ethics Board (REB) of the University of Manitoba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheirollahi, H., Luo, Y. Understanding Hip Fracture by QCT-Based Finite Element Modeling. J. Med. Biol. Eng. 37, 686–694 (2017). https://doi.org/10.1007/s40846-017-0266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0266-9

Keywords

Navigation