Skip to main content
Log in

Thermodynamic Analysis of \({\hbox {Al}}_{2}\hbox {O}_{3}\)–Water Nanofluid Flow in an Open Cavity Under Pulsating Inlet Condition

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is meant to investigate the entropy generation for mixed convective pulsating nanofluid flow in a channel with an open cavity, heated from left side (assisting flow) with uniform temperature distribution. The Navier–Stokes and energy equations are numerically solved by the Finite Volume Method. The effects of parameters such as Reynolds number (Re), volume fraction of solid nanoparticles (\(\varphi \)) and frequency (St) and amplitude (A) of the pulsation on the flow and temperature fields as well as heat transfer and entropy generation rates are examined. Results show that the fluid flow, the temperature distribution, the heat transfer characteristics and the entropy generation are considerably affected by variations of these parameters. The pulsation enhances the heat transfer rates. The maximum enhancement is obtained with an optimum pulsation frequency which depends on the studied case. An enhancement of heat transfer rate with minimum entropy generation is obtained in the range of Strouhal number [0.6,1] for \(Re = 100\); [0.4,1] for \(Re = 200\) and [0.3,1] for \(Re = 300\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Amplitude of pulsation

Be :

Bejan number, \({S}_{gen\, C, m,}/S_{gen,m}\)

\({c}_{p}\) :

Specific heat at constant pressure (J/KgK)

f :

Frequency of pulsation (Hz)

g :

Gravitational acceleration \((\hbox {m/s}^{\mathrm{2}})\)

Gr :

Grashof number, \(g\beta _f \left( {T_H -T_C } \right) H^{3}/\nu _f^2 \)

h :

Heat transfer coefficient \((\hbox {W/m}^{\mathrm{2}}K)\)

H :

Cavity height (m)

k :

Thermal conductivity (W/mK)

l :

Channel length (m)

L :

Cavity length (m)

\(Nu_{s}\) :

Space averaged Nusselt number

\(Nu_{m}\) :

Time-space averaged Nusselt number

p :

Pressure (Pa)

P :

Dimensionless pressure, \(p/\rho _{f}u_0^2\)

Pr :

Prandtl number, \(\nu _f /\alpha _f \)

Re :

Reynolds number, \(\rho _{f\,} u_0 H/\mu _f\)

Ri :

Richardson number, \(g\beta \left( {T_H -T_C } \right) H/u_0^2 \)

\(S_{gen,s}\) :

Space averaged entropy generation

\(S_{gen,m}\) :

Time-spatial averaged entropy generation

St :

Strouhal number, \(fH/u_{0}\)

t :

Time (s)

\(t^{*}\) :

Dimensionless time, \(tu_{0}/H\)

T :

Temperature (K)

\(T_{0}\) :

Temperature of reference (K)

uv :

Velocity components in x,y direction (m/s)

\(u_{0}\) :

Uniform velocity of the flow at the inlet (m/s)

UV :

Dimensionless velocity, \(u/u_{0},v/u_{0}\)

w :

Channel height (m)

xy :

Cartesian coordinates (m)

XY :

Dimensionless Cartesian coordinates, x / H, y / H

\(\alpha \) :

Thermal diffusivity \((\hbox {m}^{2}/\hbox {s})\)

\(\beta \) :

Thermal expansion coefficient (K\(^{-1}\))

\(\mu \) :

Dynamic viscosity (Kg/ms)

\(\nu \) :

Kinematic viscosity \((\hbox {m}^{2}/\hbox {s})\)

\(\rho \) :

Density \((\hbox {Kg/m}^{\mathrm{3}})\)

\(\theta \) :

Dimensionless temperature, \((T-T_{C})/(T_{H}-T_{C})\)

\(\varphi \) :

Solid volume fraction

\(\varPsi \) :

Dimensionless stream function

\(\tau \) :

Period of pulsation (s)

\(\chi \) :

Irreversibility factor

C :

Cold

H :

Hot

f :

Pure fluid

m :

Average

min :

Minimum

max :

Maximum

nf :

Nanofluid

s:

Solid, Spatial

References

  1. Bejan, A.: Entropy Generation Minimization. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  2. Oztop, H.F., Al-Salem, K.: A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew. Sustain. Energy Rev. 16, 911–920 (2012)

    Article  Google Scholar 

  3. Mahian, O., Kianifar, A., Kleinstreuer, C., Al-Nimr, M.A., Pop, I., Sahin, A.Z., Wongwises, S.: A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 65, 514–532 (2013)

    Article  Google Scholar 

  4. Yarmand, H., Ahmadi, G., Gharehkhani, S., Salim Newaz, K., Mohammad Reza, S., Maryam Sadat, A., Abu Bakar, M.: Entropy generation during turbulent flow of zirconia-water and other nanofluids in a square cross section tube with a constant heat flux. Entropy 16, 6116–6132 (2014)

    Article  Google Scholar 

  5. Mwesigye, A., Huan, Z.: Thermodynamic analysis and optimization of fully developed turbulent forced convection in a circular tube with water-\(\text{ Al }_{2}\text{ O }_{3}\) nanofluid. Int. J. Heat Mass Transf. 89, 694–706 (2015)

    Article  Google Scholar 

  6. Zhi-Ming, X., Zuodong, L., Yilong, Z.: Irreversibility and available energy loss in a heat exchanger. Int. J. Heat Mass Transf. 88, 552–557 (2015)

    Article  Google Scholar 

  7. Hussain, S., Mehmood, K., Sagheer, M.: MHD mixed convection and entropy generation of water–alumina nanofluid flow in a double lid driven cavity with discrete heating. J. Magn. Magn. Mater. 419, 140–155 (2016)

    Article  Google Scholar 

  8. Ghaffarpasand, O.: Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with \(\text{ Fe }_{3}\text{ O }_{4}\)-water nanofluid in the presence of Joule heating. Appl. Math. Model. 40, 9165–9182 (2016)

    Article  MathSciNet  Google Scholar 

  9. Manca, O., Nardini, S., Khanafer, K., Vafai, K., Numer, J.: Effect of heated wall position on mixed convection in a channel with an open cavity. Heat Transf. 43, 259–282 (2003)

    Article  Google Scholar 

  10. Aminossadati, S.M., Ghasemi, B.: A numerical study of mixed convection in a horizontal channel with a discrete heat source in an open cavity. Eur. J. Mech. B/Fluids 28, 590–598 (2009)

    Article  MATH  Google Scholar 

  11. Rahman, M.M., Saidur, R., Rahim, N.A.: Conjugated effect of joule heating and magneto-hydrodynamic on double-diffusive mixed convection in a horizontal channel with an open cavity. Int. J. Heat Mass Transf. 54, 3201–3213 (2011)

    Article  MATH  Google Scholar 

  12. Zamora, B., Kaiser, A.S.: 3D effects in numerical simulations of convective flows in cubical open cavities. Int. J. Therm. Sci. 77, 172–185 (2014)

    Article  Google Scholar 

  13. Abdellahoum, C., Mataoui, A., Oztop, H.F.: Turbulent forced convection of nanofluid over a heated shallow cavity in a duct, powder technology. Powder Technol. 277, 126–134 (2015)

    Article  Google Scholar 

  14. Zamzari, F., Mehrez, Z., Cafsi, A.E., Belghith, A., Quéré, L.: Entropy generation and mixed convection in a horizontal channel with an open cavity. Int. J. Exergy 17, 219–239 (2015)

    Article  Google Scholar 

  15. Mehrez, Z., Bouterra, M., El Cafsi, A., Belghith, A.: Heat transfer and entropy generation analysis of nanofluids flow in an open cavity. Comput. Fluids 88, 363–373 (2013)

    Article  MathSciNet  Google Scholar 

  16. Mehrez, Z., El Cafsi, A., Belghith, A., Le Quéré, P.: MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity. Magn. Magn. Mater. 374, 214–224 (2015)

    Article  Google Scholar 

  17. Mehrez, Z., El Cafsi, A., Belghith, A., Le Quéré, P.: The entropy generation analysis in the mixed convective assisting flow of Cu–water nanofluid in an inclined open cavity. Adv. Powder Technol. 26, 1442–1451 (2015)

    Article  Google Scholar 

  18. Mehrez, Z., El Cafsi, A., Belghith, A., Le Quéré, P.: Effect of heated wall position on heat transfer and entropy generation of Cu–water nanofluid flow in an open cavity. Can. J. Phys. 93, 1615–1629 (2015)

    Article  Google Scholar 

  19. Burgos, J., Cuesta, I., Salueña, C.: Numerical study of laminar mixed convection in a square open cavity. Int. J. Heat Mass Transf. 99, 599–612 (2016)

    Article  Google Scholar 

  20. Abdelmassih, G., Vernet, A., Pallares, J.: Steady and unsteady mixed convection flow in a cubical open cavity with the bottom wall heated. Int. J. Heat Mass Transf. 101, 682–691 (2016)

    Article  Google Scholar 

  21. Goodarzi, M., Safaei, M.R., Oztop, H.F., Karimipour, A., Sadeghinezhad, E., Dahari, M., Kazi, S.N., Jomhari, N.: Numerical study of entropy generation due to coupled laminar and turbulent mixed convection heat transfer and thermal radiation in a square enclosure filled with a semitransparent medium. Sci. World J. 8 (2014) Article ID 761745

  22. Safaei, M.R., Rahmanian, B., Goodarzi, M.: Numerical study of laminar mixed convection heat transfer of power-law non-Newtonian fluids in square enclosures by finite volume method. Int. J. Phys. Sci. 33, 7456–7470 (2011)

    Google Scholar 

  23. Safaei, M., Goodarzi, M., Mohammadi, M.: Numerical modeling of turbulence mixed convection heat transfer in air filled enclosures by finite volume method. Int. J. Multiphys. 5, 307–324 (2011)

    Article  Google Scholar 

  24. Safaei, M.R., Goshayeshi, H.R., Razavi, B.S., Goodarzi, M.: Numerical investigation of laminar and turbulent mixed convection in a shallow water-filled enclosure by various turbulence methods. Sci. Res. Essays 6, 4826–4838 (2011)

    Google Scholar 

  25. Safaei, M.R., Shadloo, M.S., Goodarzi, M.S., Hadjadj, A., Goshayeshi, H.R., Afrand, M., Kazi, S.N.: A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv. Mech. Eng. 8(10), 1–14 (2016)

    Article  Google Scholar 

  26. Karimipour, A., Afrand, M., Akbari, M., Safaei, M.R.: Simulation of fluid flow and heat transfer in the inclined enclosure. Int. J. Mech. Aerosp. Eng. 6, 86–91 (2012)

    Google Scholar 

  27. Nikkhah, Z., Karimipour, A., Safaei, M.R., -Tehrani, P.F., Goodarzi, M., Dahari, M.: Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition. Int. Commun. Heat Mass Transf. 68, 69–77 (2015)

    Article  Google Scholar 

  28. Goodarzi, M., Safaei, M.R., Vafai, K., Ahmadi, G., Dahari, M., Kazi, S.N., Jomhari, N.: Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int. J. Therm. Sci. 75, 204–220 (2014)

    Article  Google Scholar 

  29. Togun, H., Safaei, M.R., Sadri, R., Kazi, S.N., Badarudin, A., Hooman, K., Sadeghinezhad, E.: Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl. Math. Comput. 239, 153–170 (2014)

    MATH  MathSciNet  Google Scholar 

  30. Hassan, M., Sadri, R., Ahmadi, G., Dahari, M.B., Kazi, S.N., Safaei, M.R., Sadeghinezhad, E.: Numerical study of entropy generation in a flowing nanofluid used in micro-and minichannels. Entropy 15, 144–155 (2013)

    Article  MathSciNet  Google Scholar 

  31. Bhargava, R., Chandra, P.H.: Hybrid numerical solution of mixed convection boundary layer flow of nanofluid along an inclined plate with prescribed surface fluxes. Int. J. Appl. Comput. Math (2016). doi:10.1007/s40819-016-0278-0

    Google Scholar 

  32. Rashad, A.M.: Unsteady mixed convection flow of a nanofluid near the stagnation point on a vertical surface. Int. J. Appl. Comput. Math (2016). doi:10.1007/s40819-016-0225-0

    Google Scholar 

  33. Ojjela, O., Kashyap, K.P., Naresh Kumar, N., Das, S.K.: Influence of inclined magnetic field on a mixed convective UCM fluid flow through a porous medium with thermophoresis and Brownian motion. Int. J. Appl. Comput. Math (2016). doi:10.1007/s40819-016-0268-2

    Google Scholar 

  34. Pal, D., Roy, N.: Influence of Brownian motion and thermal radiation on heat transfer of a nanofluid over stretching sheet with slip velocity. Int. J. Appl. Comput. Math (2017). doi:10.1007/s40819-016-0303-3

    MathSciNet  Google Scholar 

  35. Rahgoshay, M., Ranjbar, A.A., Ramiar, A.: Laminar pulsating flow of nanofluids in a circular tube with isothermal wall. Int. Commun. Heat Mass Transf. 39, 463–469 (2012)

    Article  Google Scholar 

  36. Goyal, R., Bhargava, R.: EFGM simulation of pulsating double diffusive effect on transpiration cooling in nanofluid filled wavy channel. Int. J. Appl. Comput. Math (2016). doi:10.1007/s40819-016-0198-z

    Google Scholar 

  37. Pal, D., Biswas, S.: Influence of chemical reaction and Soret effect on mixed convective MHD oscillatory flow of Casson fluid with thermal radiation and viscous dissipation. Int. J. Appl. Comput. Math (2016). doi:10.1007/s40819-016-0215-2

    Google Scholar 

  38. Ali Akbari, O.A., Toghraiea, D., Karimipour, A., Safaei, M.R., Goodarzi, M., Alipour, H., Dahari, M.: Investigation of rib’s height effect on heat transfer and flow parameters of laminar water-\( \text{ Al }_{2}\text{ O }_{3}\) nanofluid in a rib-microchannel. Appl. Math. Comput. 290, 135–153 (2016)

    MathSciNet  Google Scholar 

  39. Chon, C.H., Kihm, K.D., Lee, S.P., Choi, S.U.S.: Empirical correlation finding the role of temperature and particle size for nanofluid \((\text{ Al }_{2}\text{ O }_{3})\) thermal conductivity enhancement. Appl. Phys. Lett. 87, 153107 (2005)

    Article  Google Scholar 

  40. Mehrez, Z., Bouterra, M., El Cafsi, A., Belghith, A., Le Quéré, P.: Mass transfer control of a backward-facing step flow by local forcing-effect of Reynolds number. Therm. Sci. 15, 367–378 (2011)

    Article  Google Scholar 

  41. Mehrez, Z., et al.: The influence of the periodic disturbance on the local heat transfer in separated and reattached flow. J. Heat Mass Transf. 46, 107–112 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouhaier Mehrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrez, Z., El Cafsi, A. Thermodynamic Analysis of \({\hbox {Al}}_{2}\hbox {O}_{3}\)–Water Nanofluid Flow in an Open Cavity Under Pulsating Inlet Condition. Int. J. Appl. Comput. Math 3 (Suppl 1), 489–510 (2017). https://doi.org/10.1007/s40819-017-0366-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0366-9

Keywords

Navigation