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Abstract This paper examines the determinants of mathematics performance of first-
year students enrolled in several business administration and economics study
programmes at the beginning of the first semester (T1) and nine weeks later (T2). A
simple model of educational production, which is developed in accordance with the
model of Schrader and Helmke (2015), is used as the theoretical basis for our analysis.
As predictors, we choose numerous variables which represent study-specific, socio-
economic and biographical, motivational and cognitive aspects as well as variables that
reflect the learning behaviour, working habits and the use of voluntary support (e.g.,
tutorials). Data from two skills tests and two surveys that were carried out at the
University of Kassel in the winter semester 2011/12 and regression techniques are
used to identify the determinants of mathematics performance. It turns out that the type
of school graduation, final school grades, pre-knowledge and self-belief are essential
determinants.
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Introduction

Motivation

Mathematics plays a growing role in business administration and economics (B&E). In
particular, the increasing importance of quantitative methods in both science and practice
has led to curricula in B&E study programmes at universities that include at least one or
two modules in mathematics and statistics (Voßkamp 2016). Moreover, starting with Paul
Samuelson’s textbook Economics (Samuelson, 1948/1997) – to acknowledge one mile-
stone – the importance of mathematics has increased in all areas of B&E. A short look at
widely used textbooks in economics illustrates this development (see, e.g., Blanchard and
Johnson 2012, and Pindyck and Rubinfeld 2013). The mathematics used in B&E courses
covers a wide range of topics from analysis (in particular calculus) to linear algebra. The
textbooks on mathematics for economic analysis by Simon and Blume (2010), Sydsaeter
et al. (2012) and Chiang and Wainwright (2005) give an idea of the mathematics topics
taught in B&E study programmes at the university level.

In the light of this, it seems to be clear that students with stronger mathematical skills
obtained at secondary schools will do better in B&E study programmes. For example, a
student’s grade in mathematics at the end of the secondary school has a significant impact
on the probability of passing a bachelor or master exam in B&E (see, e.g., Heublein 2014).
Anderson et al. (1994) identified background knowledge of calculus as one of the most
important determinants of the probability of dropping introductory economics courses in
the first semester. It “is a well-established finding in the literature on economic education”
that mathematical skills are a key determinant of study progress in economics (Arnold and
Straten 2012, p. 33). Consequently, from the perspective of B&E students as well as the
perspective of B&E faculties, a high level of secondary school mathematics is desirable.

However, many mathematics educators are confronted with inadequate first-year
students’ mathematical skills. “This is often referred to as the ‘Mathematics Problem’
and relates to students entering third-level whose mathematics at school level is
insufficient for the demands of their third-level Service mathematics courses and
careers” (Liston and O’Donoghou 2009, p. 77). In Bausch et al. (2014) and
Hoppenbrock et al. (2016) numerous studies are published which report the deficits
of first-year students’ mathematical skills at German universities. In B&E study
programmes in particular deficits are reported to be serious. Empirical research on
B&E students at the University of Kassel supports these results (Voßkamp and Laging
2014; Laging and Voßkamp 2016; Sonntag 2016). Results from skills tests at the
beginning of studies show dramatic deficits. Moreover, skills tests after several weeks
show that in many cases first-year students are not able to compensate deficits, despite
the substantial voluntary support (e.g., remedial courses) offered to the students.

Among mathematics educators, these facts are often communicated with a dramatic
tenor. Many mathematics educators like to point out that in earlier times things went
better, adding conjectures on negative changes with respect to the students’ character-
istics (e.g., decreasing pre-knowledge and motivation) and the negative impact of
institutional changes (e.g., the implementation of new educational standards).

The transition from school to university is a stressful, demanding, life-changing experi-
ence that requires many changes (Clark and Lovric 2008, p. 29). Especially the secondary-
tertiary transition inmathematics education has become amajor issuewith different focuses
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and different theoretical approaches (Gueudet 2008). Most of research on transition takes
place in a few specialized areas (Thomas et al. 2012). Clark and Lovric (2008) postulate the
absence of a theoretical model in research of transition. They provide an anthropological
approach based on the ‘rite of passage’ concept and reflect the different kinds of changes
students are confrontedwith. Gueudet (2008) structuresmathematical educational literature
about secondary-tertiary transitions into three views of transition: Research belonging to
‘AdvancedMathematical Thinking’ (AMT), research focussing on proof and language and
research focussing on didactical transpositions.

Therefore, most studies focus on the nature of mathematics and how it is taught at
university level. However, there are only very few studies that analyse determinants of
first-year students’ achievement, especially determinants of mathematical skills of first-
year students (e.g. Hailikari et al. 2008; Pajares and Miller 1994). In contrast, there are
many studies on the determinants of secondary school achievements. The meta-analysis
‘Visible Learning’ (Hattie 2009) gives a good overview of determinants of school
achievements based on over 800 meta-analyses. However, it is questionable whether
the results of these studies are applicable to understand the causes and consequences of
the achievements in mathematics in higher education. In particular, the impact of study-
specific, socio-economic and biographical, motivational and cognitive aspects as well
as aspects that reflect the learning behaviour, working habits and the use of voluntary
support (e.g., tutorials) is unclear.

Therefore, studies on higher education are needed in order to reveal the determinants
of the mathematical competencies of first-year students. Moreover, the interactions
between all these variables and further variables have to be analysed. The knowledge of
these relationships is necessary to identify effective and efficient interventions in order
to increase the success of students.

Purpose of the Study

In this article we will contribute to the above mentioned issues. In a first step, we will
develop a simple model of student achievement in higher education based on well-
known theories from various scientific disciplines. Our model which can be interpreted
as a model of educational production provides a link between the mathematical skills
(output variable) and several explanatory variables (input variables).

In a second step, we will test the model empirically. For this purpose well-known
methods from empirical educational research (especially regression methods) will be
applied. We used two instruments to obtain data: a skills test on basic mathematics and a
questionnaire with questions concerning students’ socio-economic and biographical back-
ground, motivational aspects, learning behaviour, working habits and the use of voluntary
support services. The sample consists of 447 B&E students enrolled at the University of
Kassel; all students were enrolled in a first-year course, ‘Mathematics for B&E’, in the
winter semester 2011/12. Both instruments were used (in variants) at two points of time: at
the beginning of the course (time T1) and in the ninth week of the course (time T2).

Outline

We start with a brief overview of relevant empirical literature. Then, we discuss
theoretical contributions related to our purposes. On this basis, we develop a simple
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model of educational production. After elaborating on the quantitative methods applied,
the data and variables used, we present and discuss the results. The paper ends with a
conclusion including summary remarks, statements on limitations, implications as well
as an outlook on further research.

Empirical Background

Previous research has highlighted several determinants of academic performance. An
overview of important factors for school achievement is given in the synthesis of over
800 meta-analyses in ‘Visible Learning’ by Hattie (2009). Hattie structures over 130
potential determinants around six factors: the child, the home, the school, the curricula,
the teacher and the approaches to teaching. Most of the meta-analyses included
combine different kinds of academic performance. A focus on only mathematical
performance and constructs related to mathematics can change the importance of
factors. For instance, a more recent meta-analysis about the relationship of maths
self-efficacy and maths performance in school and university (Laging 2016a) produced
a considerable larger effect size than the synthesized meta-analyses by Hattie (2009).

Most of the studies and meta-analyses are focussed on single aspects, but there are
very few studies that analyse these variables simultaneously (Schiefele et al. 2003),
especially in the case of higher education.

Moreover, many studies related to secondary schooling show the relevance of many
predictors in detail. PISA 2000 data confirmed socio-economic background as one of
the strongest predictors of performance (OECD 2003) with an exceedingly strong
relation in Germany (Stanat and Lüdtke 2013). Also, effects of family characteristics,
student motivation and country resources on mathematics achievement in 41 countries
are analysed by Chiu and Xihua (2008) with the PISA 2000 database. The multilevel
analyses revealed that 44 % of the variance in students’ mathematics scores occurred at
student level, 25 % at school level and 31 % at country level. Multilevel regression with
these variables explained 36 % of the variance in students’ mathematics scores. The
results indicate the importance of family characteristics. Students living with two
parents from families with greater socio-economic status, more investment in educa-
tional resources and more family involvement obtain higher scores in mathematics
performance.

Intrinsic motivation, self-efficacy and self-concept were also found to be significant
positive predictors of mathematics achievement. Analysing the PISA data of Turkish
students, a factor analysis with 14 items from a student questionnaire revealed four
factors accounting for approximately 34 % of the variance in mathematics scores
(Demir et al. 2009): student background (e.g., economic, social and cultural status,
HISEI), self-related cognitions in mathematics (self-concept, interest, self-efficacy and
anxiety in mathematics), learning strategies and school climate. Multivariate regression
revealed that student achievement is predominantly influenced by student background
and self-related cognitions in mathematics (Demir et al. 2009).

In higher education, “various predictors, including precollege characteristics, tradi-
tional assessments of one’s cognitive abilities, and a battery of psychological and non-
cognitive variables” (Strayhorn 2013, p. 17) have been investigated to explain aca-
demic achievement. As “academic preparation is the most significant predictor of
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academic achievement in higher education” (Strayhorn 2013, p. 18), past grades in
school are important predictors of academic achievement in higher education. In
multiple regression analyses Liston and O’Donoghou (2009) reveal mathematical
competencies and past experiences in terms of results of final maths exams as the
strongest predictors of mathematics marks in the first semester.

The amount of time and effort students devoted to their study influences their
achievement in college (Kuh and Hu 1999; Strayhorn 2013). A meta-analysis to predict
college performance shows that ACT/SAT scores and high school GPA were the
strongest predictors, but academic self-efficacy and achievement motivation contribute
meaningfully to the prediction of college performance (Robbins et al. 2004). Hailikari
et al. (2008) revealed domain-specific prior knowledge as strongest predictor of
students’ achievement on a university mathematics course using structural equation
modelling. Prior knowledge test performance was strongly influenced by academic
self-beliefs (expectation of success, self-efficacy, self-perception of mathematics
ability).

Anthony (2000) identified factors that students and lecturers perceived as most
influential for students’ academic success or failure in mathematics courses in their
first year at university. Factors that students and lecturers listed as most important in an
open-ended survey were categorized in factors related to lectures, courses, students and
other external factors. Students and lecturers rated student factors most often, but
lecturers placed more responsibility for success and failure on student factors than
students did. The importance of identified factors was analysed using a Likert-type
scale questionnaire and “motivation was seen by both students and lecturers as the most
influential factor related to levels of success” (Anthony 2000, p. 9).

Theoretical Background

General Remarks

A general theory to explain the maths skills of first-year students does not exist.
Therefore, we will start with theoretical approaches which were originally formulated
to explain achievements of students at secondary schools.

Numerous theories from very different fields such as pedagogical psychology,
sociology and economics can be used to explain student achievement at school. The
sub-discipline classroom research alone has developed several different theories in the
recent decades: personality paradigm, teaching style, process-product paradigm, expert
paradigm, systemic model (for a review see Klieme 2006). In many theories the focus is
set on only a few predictive variables, e.g. the personality paradigm focusses on
teachers’ personality while the process-product paradigm focusses on teachers’ behav-
iour in the classroom.

We want to show a comprehensive picture of the determinants of mathematics
performance. We, therefore, have to start with complex models which simultaneously
take into account many variables. A model developed by Schrader and Helmke (2015)
meets this criterion. This model, which is based on earlier works by A. Helmke, F. W.
Schrader and F. E. Weinert (in particular Helmke and Weinert (1997)), will be the
starting point for the development of our model.
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The Model by Schrader and Helmke (2015)

The complex model was formulated to explain school achievements (SA). The authors
take into consideration six blocks of variables which directly or indirectly determine the
pupil’s performance. These blocks are (see Fig. 1):

& learning activities (LA)
& individual motivational determinants (IMD)
& individual cognitive determinants (ICD)
& cultural background, media, peers (CB)
& home learning environment (HLE)
& school organisation, climate and classroom context (SO)

The authors postulate several important interdependencies. Learning activities (LA)
decisively determine a pupil’s school achievement (SA) and are influenced by motiva-
tion (IMD) and cognition (ICD). Moreover, both are influenced by cultural background
(CB). The environment at home (HLE) and at school (SO) also influences all these
variables. Furthermore, there are also impacts from student achievements. Schrader and
Helmke (2015) assume that the pupil’s achievements influence motivational (IMD) and
cognitional (ICD) variables as well as the environment at home (HLE) and at school
(SO). This model integrates many theories that can be used to specify the variables of
the blocks. For example, the variables that are part of IMD can be identified by
expectancy-value-theory (Wigfield and Eccles 2000). Constructs related to expectan-
cies are for example self-concept and self-efficacy, constructs related to values are for
example interest and goal orientation.

Fig. 1 The structure of the model of F. W. Schrader and A. Helmke (See: Schrader and Helmke 2015, p. 49)
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The Model

The Applicability of the Model of Schrader and Helmke for Higher Education
Issues

The model of Schrader and Helmke (SH model) was originally designed to explain
school achievement, but it integrates many theories that are not restricted to secondary
schooling. For that reason, the model is transferable from a secondary schooling
context to a higher education context. Most of the interdependencies which work in
the case of secondary schooling are also relevant in the case of higher education at
universities, but not all of them. The influence of HLE is assumed to be weaker because
university students are more independent than secondary school students. On the other
hand, motivational factors play a bigger role because attendance, invested time and
effectiveness of learning in higher education is less controlled. Chemers et al. (2001)
argue that “confidence in one’s relevant abilities (i.e., self-efficacy) and optimism play a
major role in an individual’s successful negotiation of challenging life transitions” (p.
55). However, in the case of higher education the list of variables, which belong to the
different blocks, has to be adjusted. And, before starting with empirical issues we have
to specify scales and variables which represent the mentioned blocks.

Need for a Simplification of the Model

The SH model is a suitable theoretical basis that can be used to explain the mathemat-
ical achievements of first-year students. In principle, the SH model is also an adequate
basis for empirical analysis. However, fundamental problems arise when the SH model
has to be verified empirically because the quantitative methods which have to be
applied require a large number of observations. In our case, the number of students
represented in our data set is too small. The application of education production
functions which implies a simplification of the SH model allows us to continue.

Education Production Functions (EPF)

The starting point of the EPF approach (see, e.g., Brewer et al. 2010) is the original
concept of the production function: goods (e.g. cars) are produced through the use of
factors of production (e.g., labour, capital and intermediate products) (see Fig. 2).

Fig. 2 The concept of production functions
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As a rule, it is assumed that the relationship between output variable and input
variables can be represented mathematically by using functions (e.g., Cobb-Douglas
functions and linear functions).

The EPF approach assumes that an educational output (e.g., a certain grade or a level
of students’ performance in mathematics) is a result of a production process where
educational inputs (e.g., investment of time, motivation, quality of school) determine
the output. The most crucial problem with EPF concerns the choice of variables. In
standard production theory it is clear which variables have to be taken into account for
both output variable and input variables. Moreover, the measurement of the variables is
straightforward because widely accepted accounting principles are applied (in Europe:
European systems of accounts (ESA); Eurostat 2013).

With EPFs, things are more difficult. First, for many input and output variables, there
is no consensus for measurement of the variables. Second, there is no clearly defined set
of input variables which have to be taken into account if we look for the determinants of
a specific educational output variable. Therefore, the application of EPFs is associated
with heuristic and empirical methods in order to make the approach valuable.

Operationalisation of Input and Outcome Variables

Because of this background, we are working with a simple model which covers the
main features of the SH model. In particular, we use the EPF approach to link student
achievement and important predictors.

As output variable, we choose the mathematical achievement of first-year students.
As input variables, we select variables representing most of the blocks of determinants
considered in the SH model. We add study-specific variables in order to transfer the
model to the higher education case. These variables can be assigned to six blocks:

& study-specific variables (S)
& socio-economic and biographic variables (B)
& motivational factors (M)
& learning strategies (L)
& working habits (W)
& use of support (U)

Figure 3 shows the basic structure of the model. In the next sections we will justify
the structure of the model and the variables we have taken into account.

A Comparison of the Variables Represented in the SH Model and the Simplified
Model

In our model the structure and labels of the blocks are different from the SH model. A
comparison of the blocks (see Table 1) illustrates that a high degree of coherence
between the re-structured blocks and the SH model exists.

Nevertheless, there are some differences. First, we do not take into account variables
representing the school organisation, etc. (SO) because of our sample. All students repre-
sented in our sample are enrolled in the same study programme at the same university.
Therefore, all students are confronted with the same organisational circumstances and the
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same mathematics educator. In general, we suppose that these aspects influence the
development of mathematical achievement. In lecturers’ and students’ perception, course
design and organization influence study success (Anthony 2000). Aspects that should be
considered for other samples are the kind of mathematics and the way mathematics is
taught. According to Tall (2008), pure mathematics in university requires a transition from
school mathematics to formal thinking. However, we do not focus on advanced mathemat-
ical thinking because B&E students learn maths as a service subject. Mathematics for
economics has – to note one aspect – a strong focus on the application of mathematical
methods and not on proofs. Second, we do not take into account most of the variables
representing the home learning environment (HLE).We suppose that parental personalities,
expectations, theories, support, climate and sanctions do not play such a big role in tertiary
education, because university students are more independent than secondary school stu-
dents. Only socio-economic variables that are measured by university degree of parents are
supposed to influence achievement. Third, we do not take into account a separate block
representing aspects of the cultural backgrounds of the students. Cultural background is
represented by the variable migration background in block B. More aspects of cultural
backgroundwould only be relevant within a broader sample with higher degree of diversity.
Finally, we take several variables into account which cover study-specific aspects.

Fig. 3 The basic structure of the model

Table 1 Comparison of blocks of variables represented in the SH model and the simplified model

SH model Simplified model

School organization (SO)

Home learning environment (HLE) Socio-economic and biographic variables (B) (partly)

Cultural background (CB) Socio-economic and biographic variables (B) (partly)

Individual motivational determinants (IMD) Motivational factors (M)

Individual cognitive determinants (ICD) Socio-economic and biographic variables (B) (partly)
and learning strategies (L)

Learning activities (LA) Working habits (W) and use of support (U)

Study-specific variables (S)
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How to Operationalize the Blocks? First Remarks

Figure 4 lists the variables which are used to operationalize the six blocks. These blocks will
serve as predictors for the students’ achievements inmathematics. After an elaboration of the
methods and data in the next two sections, wewill discuss in detail which variables should be
included in the blocks by looking at theoretical arguments and relevant measurement issues.

Method

In this section we present the method we apply to estimate the determinants of maths
performance at T1 (first week of the semester) and T2 (nine weeks later). In both cases
we will apply the same linear regressions method. However, we have to take into
account that at T1 and T2 different blocks of variables are relevant. Working habits (Wt)
and the use of support services (Ut) refer to learning activities during the semester and
are therefore not surveyed at T1. These blocks are relevant at T2. Moreover, at T2
previous knowledge has to be taken into account.

The following remarks might be helpful to understand the approach with respect to
the use of data. The variables of block S and block B do not change from T1 to T2.
Variables concerning motivational factors (block M) and learning strategies (block L)
will change from T1 to T2. Variables of block W and block U are only relevant at T2.
For that reason, variables belonging to the blocks S, B, M and L are surveyed at T1. At
T2, the survey includes questions related to the blocks M, L, W and U.

Mathematical Representation

For the mathematical representation of the relationships we use the following notation:

k index for students
i index for variables within a block
πk
T1 maths performance of student k in T1

study-specific 

variables ( )

S1 participation preparation course

S2 exam already taken

S3 course of studies

learning 

strategies 

( )

L1 memorising strategies

L2 elaboration strategies

L3 control strategies

L4 planning strategies

L5 heuristic strategies

socio-economic 

and biographic 

variables ( )

B1 gender

B2 type of graduation

B3 years since graduation

B4 university degree parents

B5 apprenticeship

B6 grade of graduation

B7 maths grade in school

B8 migration background

working 

habits ( )

W1 effort

W2 persistence

W3 regularity

W4 preparation of lecture

W5 preparation of assignments

Motivational 

factors ( )

M1 maths self-efficacy

M2 maths self-concept

M3 maths interest

M4 mastery goal orientation

M5 maths anxiety

M6 perceived value of maths

use of 

support 

services ( )

U1 lecture

U2 tutorial

U3 assignments 

U4 additional tasks

U5 open learning environment

U6 weekly tests with  feedback

U7 weekly tests without feedback

Fig. 4 Blocks of individual variables affecting mathematics performance
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πk
T2 maths performance of student k in T2

Sik k’s value for variable Si in T1 (and T2)
Bik k’s value for variable Bi in T1 (and T2)
Mik k’s value for variable Mi in T1, respectively T2
Lik k’s value for variable Li in T1, respectively T2
Wik k’s value for variable Wi inT2
Uik k’s value for variable Ui in T2
s, b, m, l, w, u number of variables included in block S, B, M, L, W, U

At the first point of time T1 (first week of the semester) we assume the following
relationship in accordance with our model:

πT1
k ¼ f S1k ;…; Ssk ;B1k ;…;Bbk ;M 1k ;…;Mmk ; L1k ;…; Llkð Þ ð1Þ

At the second point of time T2 (nine weeks after T1) we expect that also previous
knowledge (measured by the knowledge at T1), working habits, as well as the use of
voluntary support, will influence maths performance of students. As a consequence, we
receive the following relationship:

πT2k ¼ f πT1k ; S1k ;…; Ssk ;B1k ;…;Bbk ;M1k ;…;Mmk ; L1k ;…; Llk ;W1k ;…;Wwk ;U 1k ;…;Uuk
� � ð2Þ

Both models will be the theoretical basis for our empirical analysis.

Linear Regression Models

The starting points for our further analysis are Eqs. (1) and (2). In accordance with most
studies in this research domain, we assume a linear relationship between student maths
performance and the predictors motivated above. Scatterplots confirm the assumption
of a linear relationship; see Figs. 5 and 6 (Appendix) as samples. This allows us to
apply standard regression methods (e.g., Wooldridge 2015).

For T1 the following regression model will be analysed:

πT1
k ¼ β0 þ

X

i¼1;…;s

βS
i Sik þ

X

i¼1;…;b

βB
i Bikþ

X

i¼1;…;m

βM
i Mikþ

X

i¼1;…;l

βL
i Lik þ εk ð3Þ

For T2 we have to add some more independent variables, as mentioned above:

πT2
k ¼ β0 þ βT1

π πT1
k þ

X

i¼1;…;s

βS
i Sik

X

i¼1;…;b

βB
i Bikþ

X

i¼1;…;m

βM
i Mik

þ
X

i¼1;…;l

βL
i Likþ

X

i¼1;…;w

βW
i Wik þ

X

i¼1;…;u

βU
i Uik þ εk

ð4Þ

In both Eqs. (3) and (4), the variables βi
j represent canonically the regression

coefficients which have to be estimated. The error terms are denoted by εk . We
use the standard ordinary least squares method to estimate the regression
coefficients.
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Nested Regression Methods

Nested regression methods are used where blocks of variables are taken into consid-
eration. Every block of variables is successively integrated in the model if the deter-
mination coefficient R2 increases significantly. For details see Acock (2014). Due to the
structure of our model this regression method should be applied.

Data

General Setting

Data is drawn from two surveys which were carried out at University of Kassel in the
winter semester 2011/12. At the beginning of the semester (T1, October 2011)
students were asked to participate in a skills test and a questionnaire for the first
time. The survey was completed in the first session of the lecture. The students were
asked to participate in another skills test and questionnaire nine weeks later (T2,
December 2011). In both cases, students had to complete the survey (skills test and
questionnaire) in 75 min. All surveys were anonymous. Students were asked in both
surveys to generate a unique password. This allows us to match data from T1 with
data from T2.

The authors and one additional tutor managed the surveys. The surveys were
voluntary. The skills tests were not part of the mark of the course, but they were used
to give students feedback about their basic maths skills. There might be students who
did not make much of an effort and could have performed better. However, we had the
impression that most students took the survey seriously.

Participants

The sample consists of B&E students who were enrolled in the course ‘Mathematics for
B&E students’ in the winter semester 2011/12. For most participants this course was
compulsory. At time T1, 447 students participated in the survey; at time T2, 237stu-
dents. Only 183 students participated in both surveys. Due to missing values for several
variables the number of observations is smaller.

Skills Tests

Both skills tests used at T1 and, respectively, T2 include 30 tasks on fundamen-
tal mathematical topics which are taught at secondary schools. All tasks are
solvable with secondary school mathematics and do not require specific econom-
ic knowledge. Table 2 gives an overview. With respect to the structure, the topics
and the level of difficulty the two skills tests are comparable but they are not
identical.

For each task, a student could obtain not more than one credit. The skills tests
include different types of tasks: single choice tasks, multiple choice tasks, calculations
and drawing graphs. The topics included in the skills tests are only briefly considered in
lectures. However, voluntary support is provided for these topics.
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Originally, the main purpose of the skills tests was to identify students with problems
in basic mathematics skills in order to encourage them to use the voluntary support
services provided. Therefore, tasks of the maths skills tests are structured by topics.

Questionnaires

At both points in time the students were asked to answer a questionnaire. At time T1,
the students were asked questions which are related to the blocks of variables S, B, M,
and L. The questionnaire consists of 16 questions and 47 Likert-type items. At time T2,
in the middle of the semester, we also asked questions related to blocks W and U that
included additional 44 Likert-type items. The questionnaires start with questions about
study-specifics and biographic background. The Likert-type items are organized in
blocks. The items are randomly scattered within these blocks.

Independent and Dependent Variables

In this section we will present and explain the variables which are subject of the empirical
analysis.We start with the dependent variables πT1 and πT2. Afterwards, the variables of the
six blocks will be discussed. This analysis is based on information presented in seven tables
(Tables 3, 4, 5, 6, 7, 8 and 9). All tables have the same structure: columns (1) to (3) contain
the name of the variable, a brief description and comments. The type of the variable is
presented in column (4). We take into account binary variables (yes / no or 1 / 0), metric

Table 2 Comparison of blocks of variables represented in the SH model and the simplified model

Topic Description Example

terms evaluation and simplification of terms Simplify this term as far as possible:
1−y2
yþ1

equations and inequalities solving linear, quadratic and cubic
equations and inequalities

Solve following quadratic equation:
(x − 2)2 − 2 = − 1

functions determination of properties, drawing
graphs

Draw the graph of the following
function:

y ¼ 1
x

differential calculus determination of derivatives Determine the first derivation of
f(x) = e3x

Table 3 Dependent variables

Code Description Comments Type Values Items Mean CA Mean CA

(T1) (T1) (T2) (T2)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

πT1 maths performance
at T1

number of correct
answers to tasks in T1

scale 0 to 30 30 5.99 .873 x x

πT2 maths performance
at T2

number of correct
answers to tasks in T2

scale 0 to 30 30 x x 12.35 .863
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variables (the values are real numbers) and scales. A scale is defined on the basis of two or
more variables (items). For example, maths anxiety is based on three items. Column (5)
presents the range of values a variable can show. Column (6) presents the number of items.
If a variable is not defined as a scale, the value is 1. Due to the means of the variables at T1
and T2 (column (7) and column (9)) the reader will gain an impression of the magnitude of
the variables and the change from T1 to T2. Moreover, for all scales Cronbach’s alpha
(CA) is presented (column (8) and (10)) as a measure of reliability.

Dependent Variables: Mathematical Achievement in T1 and T2

As mentioned above, the skills tests provide two variables by generating sum scores,
which we use as a measure for mathematics performance at T1 and T2, respectively:

πk
T1 maths performance of student k in T1

πk
T2 maths performance of student k in T2

Table 3 presents information about the two dependent variables. In particular, the
table shows that mathematics performance improves over time.

Block S: Study-Specific Variables

With block S, we gather data about the students’ institutional study characteristics. The
block consists of three variables (Table 4).

First, it is important to know whether the student has taken the preparation course in
mathematics, which is offered just a fewweeks before the test in T1 (variable S1). Like the
test, this course is built on the maths curricula of secondary schools. For that reason the
following results seem to be natural: if a student participated in the preparation course than
we can expect a positive impact on maths performance. And, if a student who failed the
final exam takes the main course twice (variable S2) than we conjecture that there is also a
positive impact on themathematical achievement. Finally, variable S3 represents the study
programme a student has chosen. Most students are enrolled in the study programme
‘Business Administration & Economics’ (in German: Wirtschaftswissenschaften).

Table 4 Variables block S

Code Description Comments Type Values Items Mean CA Mean CA

(T1) (T1) (T2) (T2)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

S1 participation
preparation course

participation in
preparation course:
yes = 1; no = 0

binary 0 / 1 1 .436 x .490 x

S2 exam already taken student has already
taken exam without
success: yes = 1; no = 0

binary 0 / 1 1 .116 x .226 x

S3 course of studies business administration
& economics = 1;
other programmes = 0

binary 0 / 1 1 .712 x .757 x
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Block B: Socio-Economic and Biographic Variables

Block B of independent variables (Table 5) consists of important socio-economic and
(educational) biographical variables that can also be found in well-known school
performance studies like PISA or TIMSS.

Most of the eight variables are related to the educational background of the students.
B2 indicates the type of school graduation. With respect to the complex German
educational system, we distinguish between only two types of graduation: graduation
from a ‘Fachoberschule’ ends with ‘Fachhochschulreife’ (FOS), graduation from a
‘Gymnasium’ with ‘Allgemeine Hochschulreife’ (Abitur). The tracks are quite different
with respect to the number of school years (FOS: 12; Abitur 12 or 13) and the
quantitative and qualitative workload in mathematics. For a description of the differ-
ences see EACEA (2015). Furthermore, we assume that the length of the period between
the secondary school graduation and the start of higher education (B3) will have an
impact on mathematical achievements. Faulkner et al. (2011) found that mature students
who have not engaged in mathematics for a number of years (‘non-standard students’)
are mathematically less prepared. Non-standard students perform below average in the
diagnostic test at the beginning of the semester, but they improve and are more likely to
use the voluntary support services. B6 und B7 represent the students’ success at school.
We take the overall final grade and the final grade in mathematics into consideration.

Besides this, we consider four variables which are also present in many studies on
secondary school achievement (e. g., PISA, TIMSS): gender (B1), migration back-
ground (B8) and the academic background of the parents (B4). Finally, B5 indicates
that a student has completed an apprenticeship.

Table 5 Variables block B

Code Description Comments Type Values Items Mean CA Mean CA

(T1) (T1) (T2) (T2)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

B1 gender male = 1; female = 0 binary 0 / 1 1 .479 x .449 x

B2 type of graduation ‘FOS’ = 0; ‘Abitur’ = 1
(details: see text)

binary 0 / 1 1 .459 x .551 x

B3 years since graduation years between end
of secondary school
and the start of studies
at the university

metric 0 to n 1 2.17 x 3.32 x

B4 university degree
parents

mother or father obtained
a tertiary degree =1;
else = 0

binary 0 / 1 1 .384 x x x

B5 apprenticeship student has completed an
apprenticeship: yes = 1;
no = 0

binary 0 / 1 1 .385 x x x

B6 grade of graduation final grade at second school:
excellent = 1; insufficient = 5

metric 1 to 5 1 2.48 x x x

B7 maths grade in school final grade in maths:
excellent = 1; insufficient = 5

metric 1 to 5 1 2.60 x 2.43 x

B8 migration background student has a migration
background: yes = 1;
no = 0

binary 0 / 1 1 .267 x .268 x

122 Int. J. Res. Undergrad. Math. Ed. (2017) 3:108–142



Block M: Motivational Factors

Block M, as part of the individual motivational determinants (IMD), includes six
approved motivational scales (Table 6) that have been used for several studies (e. g.
LIMA: Fischer et al. 2012; CO2CA: Bürgermeister et al. 2011; PISA: Kunter et al.
2002; PYTHAGORAS: Rakoczy et al. 2005). All scales are developed maths specific.

First, we include maths self-efficacy (M1) as a predictor for mathematical achieve-
ment. The concept of self-efficacy is based on a theoretical framework by Bandura
(1977). “Perceived self-efficacy refers to beliefs in one’s capabilities to organize and
execute the courses of action required to produce given attainments. […] Such beliefs
influence the courses of action people choose to pursue, how much effort they put forth
in given endeavors, how long they will persevere to adversity, whether their thought
patterns are self-hindering or self-aiding, how much stress and depression they expe-
rience in coping with taxing environmental demands, and the level of accomplishments
they realize” (Bandura 1997, p. 3). The scale is based on a common procedure applied
e.g. by Pajares and Miller (1994). Just before the skills test, students rate for each task
of the skills test how confident they are to solve the tasks.

Maths self-concept (M2),master goal orientation (M4) andmaths anxiety (M5) are further
scales. These scales are adopted from the German project LIMA (Fischer et al. 2012) that is
concerned with creating new standards for the maths teachers’ education and implementing
teaching innovations. Shavelson et al. (1976) define self-concept as a person’s perception of
himself that can be described as “organized,multifaceted, hierarchical, stable, developmental,
evaluative, differentiable” (p. 411). Based on the hierarchical model of self-concept we
measure maths self-concept that is a subarea of the academic self-concept. Students rate e.g.,
how well they understand mathematical subjects and how gifted they are in mathematics.
The distinction between self-efficacy and self-concept is difficult because the two constructs
share a number of similarities. For a better distinction, we measure maths self-efficacy on a
task-specific scale and maths self-concept on a domain specific scale. For a detailed review
on the differences between the two constructs, see Bong and Skaalvik (2003).

Table 6 Variables block M

Code Description Comments Type Values Items Mean CA Mean CA

(T1) (T1) (T2) (T2)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

M1 maths self-efficacy based on common
procedure (see e.g.
Pajares and
Miller 1994)

scale 30 1 to 8 30 4.79 .946 5.00 .962

M2 maths self-concept see LIMA scale 3 1 to 6 3 3.44 .891 3.41 .886

M3 maths interest see Co2CA scale 4 1 to 6 4 3.54 .932 3.55 .945

M4 mastery goal
orientation

based on LIMA scale 3 1 to 6 3 3.42 .849 3.34 .836

M5 maths anxiety see LIMA scale 3 1 to 6 3 4.09 .850 4.00 .847

M6 perceived value of
maths

based on Shell
et al. (1989)

scale 9 1 to 6 9 4.67 .880 4.40 .876
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The achievement goals construct is important in achievement motivation literature.
Different conceptual models have been developed (Elliot et al. 2011, p. 632). The
dichotomous model distinguishes between mastery goals and performance goals as
purpose for engaging in achievement (Elliot et al. 2011, p. 632). Mastery goal
orientations are “used to refer to goals that orient the individual to focus on the task
in terms of mastering or learning how to do the task” (Pintrich 2000, p. 95). In contrast,
performance goals are “goals that orient the individual to focus on the self, ability, or
performance relative to others” (Pintrich 2000, p. 95). This model has been extended,
for further information see Elliot et al. (2011). The meta-analysis of Huang (2011a)
shows a weak positive correlation between mastery goal orientation and achievement
and no correlation between performance goal orientation and achievement in the two-
factor-model. Therefore, we only measure mastery goal orientation. A sample item is “I
prefer challenging tasks, so I can learn a lot”.

Students with maths anxiety perceive mathematics-related situations as threatening
to their self-esteem. The meta-analysis of Ma (1999) confirms the negative relation
between maths anxiety and achievement in mathematics with an average correlation
coefficient of -.27.

Maths interest (M3) is modelled in accordance with Rakoczy et al. (2005). According
to Schiefele (2009) we measure individual interest that “is defined as a relatively stable
set of valence beliefs” (p. 201). Interest focuses on the content of learning and “is always
related to a specific object, activity, or subject area” (Schiefele 2009, p. 197). Therefore,
we measure interest domain-specific, e.g. with “I find mathematics fascinating”.

We received a scale for the perceived value of maths (M6) by adaptation of a scale
developed by Shell et al. (1989). Students were asked to rate the importance of
mathematics for their study and career aspirations. Sample items are “How important
are skills in mathematics to get a job?” and “How important are skills in mathematics to
get good grades at university?”

Block L: Learning Strategies

Block L (Table 7) focuses on the learning strategies of the students. Capturing learning
strategies is one way to measure aspects of self-regulated learning. The different models

Table 7 Variables block L

Code Description Comments Type Values Items Mean CA Mean CA

(T1) (T1) (T2) (T2)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

L1 memorising strategies see LIMA (and PISA) scale 3 1 to 6 3 3.99 .694 3.60 .751

L2 elaboration strategies see LIMA (and PISA) scale 4 1 to 6 4 2.86 .705 2.76 .801

L3 control strategies based on LIMA
(and PISA)

scale 5 1 to 6 5 4.15 .751 4.04 .764

L4 planning strategies based on Rakoczy
et al. (2005)

scale 4 1 to 6 4 4.33 .678 4.30 .721

L5 heuristic strategies based on Rakoczy
et al. (2005)

scale 5 1 to 6 5 4.63 .750 4,80 .759
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of self-regulated learning (e.g. the three-layer model by Boekaerts 1999) have the major
components in common: cognitive, metacognitive and motivational components. Mo-
tivational aspects are captured in Block M. Cognitive and metacognitive components
are a part of the individual cognitive determinants (ICD) that are operationalized by
learning strategies. We expect that the type of learning strategies the students apply will
influence the mathematical performance. Research indicates “the positive effect of
students’ use of self-regulated learning strategies on their academic performance”
(Zimmerman 1990, p. 185).

As in the case of motivational factors, we adopt scales that are applied in several
studies on school achievement. Specifically, we define five scales representing the
following learning strategies: memorising strategies (L1), elaboration strategies (L2)
and control strategies (L3), planning strategies (L4), heuristic strategies (L5). While
the scales L1 to L3 are based on scales used in LIMA and PISA, L4 and L5 are based
on scales used in Rakoczy et al. (2005). The scales are domain-specific. The skills
tests capture basic mathematical skills, not advanced mathematical thinking. There-
fore, we apply scales that are originally used in studies on secondary school
mathematics.

L1, L2 and L5 represent cognitive learning strategies; L3 and L4 represent
metacognitive learning strategies. Sample items are: “To learn mathematics, I
try to remember every step of the solution process” (L1), “When I am learning
maths, I try to link the content with things I have already learned in other
subjects.” (L2), “I ask myself questions about the content to be sure that I have
understood everything.” (L3), “When I am learning maths, at first I plan what
exactly I have to practise” (L4), “When I am solving a difficult task, I bring to
my mind what is the main issue of the task.” (L5).

Cognitive strategies can be classified into surface cognitive and deep cognitive
strategies. “Surface strategies refer to rehearsal, involving the repetitive rehearsal and
rote memorization of information […]. Deep cognitive strategies, pertaining to elabo-
ration, organization and critical thinking involve challenging the veracity of informa-
tion encountered and attempting to integrate new information with prior knowledge and
experience.” (Vrugt and Oort 2008, p. 128). Accordingly, L1 are surface cognitive
strategies, L2 and L5 are deep cognitive strategies.

Empirical research supports a positive relationship between deep approaches of
learning and achievement, and a negative relationship between surface approaches of
learning and achievement (e.g. Ainley 1993). Other studies showed that a mix of
surface and deep cognitive strategies is most effective (e.g. Vrugt and Oort 2008).

Block W: Working Habits

Block W (Table 8) consists of five variables which represent the working habits of the
students.

In the questionnaire, the students were asked about their effort (W1), persistence
(W2) and regularity (W3) regarding maths assignments. The fundamental idea of these
variables is based on Rakoczy et al. (2005) and PISA. We adjusted the structure of the
scales and the wording of the items. Sample items are “In mathematics I try to do
everything as well as possible.” (W1), “I always endeavour to solve the assignments in
mathematics.” (W2), “I do not give up even if the mathematical tasks are very
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difficult.” (W2) and “I work on the assignments every week as good as I can.” (W3).
Furthermore, we asked the students how many hours they spent on the preparation of
the lecture (W4) and the assignments (W5). Thus, the variables reflecting the students’
working habits are part of learning activities (LA). Obviously, these variables are only
used as predictors for the explanation of the mathematical performance in T2. There is
empirical support for this assumption (e.g. Kuh and Hu 1999; Strayhorn 2013).

Block U: Use of Support

Block U comprises variables that capture the use of (voluntary) support services.
Besides the lecture, students can use a variety of voluntary support services. All
services are offered every week throughout the semester. The variables included in
block U (Table 9) show how often the students have used the services.

U1 shows how often the students participated in lectures (4 h per week). The mean
of the variable is quite high. However, it should be mentioned that the questionnaire
was conducted in the lecture at time T2.

The variables U2 to U7 are related to the voluntary support services.

& U2: Tutorials (2 h per week, about 20 students per group) are voluntary courses; the
tutors are experienced students (mostly third- and fourth-year students).

& U3: Assignments are offered to the students every week. The solutions to the tasks
of these assignments are discussed in the tutorials. The assignments are voluntary.
In general, there is no individual feedback.

& U4: Beside the assignments further tasks are offered. These tasks are not subject to
the tutorials. There is no feedback.

& U5: During the semester the students can visit the ‘MatheTreff’. This is an open
learning environment. Four hours per week a seminar room is opened for students;

Table 8 Variables block W

Code Description Comments Type Values Items Mean CA Mean CA

(T1) (T1) (T2) (T2)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

W1 effort based on Rakoczy
et al. (2005)
and PISA

scale 7 1 to 6 7 x x 4.45 .838

W2 persistence based on Rakoczy
et al. (2005)

scale 4 1 to 6 4 x x 4.20 .838

W3 regularity based on Rakoczy
et al. (2005)
and PISA

scale 3 1 to 6 3 x x 4.96 .819

W4 preparation
of lecture

hours spend on the
preparation
of the lecture

metric 0 to n 1 x x 2.70 x

W5 preparation
of assignments

hours spend on the
preparation of
the assignments

metric 0 to n 1 x x 2.60 x
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a lecturer (PhD student or experienced student) is present who answers questions if
required.

& U6: Each week a voluntary test is offered. U6 shows the intensity of use of the tests
with feedback. It means that the students submit solutions; after a week, the
students receive written feedback. The reviewers are experienced students super-
vised by a lecturer (PhD student).

& U7: This variable shows the intensity of use of the test without feedback. It
means that students work on the test, but they do not submit solutions to the
reviewers.

Table 9 Variables block U

Code Description Remarks Type Values Items Mean CA Mean CA

(T1) (T1) (T2) (T2)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

U1 use of lecture students were asked how
often they make use of
the lecture: at no
time = 1; at all
times = 6

metric 1 to 6 1 x x 5.70 x

U2 use of tutorial students were asked how
often they make use of
the tutorial: at no
time = 1; at all
times = 6

metric 1 to 6 1 x x 5.40 x

U3 use of assignments students were asked how
often they make use of
the assignments:
at no time = 1; at all
times = 6

metric 1 to 6 1 x x 5.26 x

U4 use of additional tasks students were asked how
often they make use of
additional tasks:
at no time = 1; at all
times = 6

metric 1 to 6 1 x x 3.72 x

U5 use of an open
learning environment

students were asked how
often theymake use of
the open learning
environment:
at no time = 1; at all
times = 6

metric 1 to 6 1 x x 2.01 x

U6 use of tests
with
feedback

students were asked how
often theymake use of
the tests with feedback:
at no time = 1; at all
times = 6

metric 1 to 6 1 x x 1.82 x

U7 use of tests
without
feedback

students were asked how
often they make use of
the tests without
feedback: at no
time = 1;
at all times = 6

metric 1 to 6 1 x x 2.61 x
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In general, we expect that the use of the support services will have positive impact
on the mathematical performance. However, one aspect of the concept for the support
services is crucial: While the skills tests take only tasks related to secondary school
mathematics into account the support services cover the curriculum of the lecture for
which secondary school mathematics plays only a limited role.

Results

Results for T1

First, we will present the results obtained for variables at T1 by determining correlation
coefficients (see Table 14 in the Appendix). All motivational variables, except perceived
value of maths (M6), correlate moderately with maths performance at T1. We find the
strongest correlation with maths self-efficacy (M1) (r= .44). In addition, some study-
specific and biographical background variables correlate moderately with maths perfor-
mance. Exam already taken (S2) and type of graduation (B2) correlate positively and
maths grade in school (B7) negatively with maths performance at T1. Learning strategies
show a diverse pattern of correlations. Only elaboration strategies (L2) correlate positive-
ly, but weakly with maths performance. Control, planning and heuristic strategies (L3, L4,
and L5) show no correlation with maths performance and memorising strategies (L1)
even a weak negative correlation. All motivational variables correlate from moderately to
strongly among themselves and with maths grade in school, but not strongly. Learning
strategies correlate from moderately to strongly among themselves, too.

Second, we will present the results obtained for maths performance at T1 (πk
T1) by

applying block regression techniques. Every block of variables is successively inte-
grated in the model if the determination coefficient R2 increases significantly (tested
with ANOVAs). For T1 four models are tested (M1a, M1b, M1c, M1d). All blocks of
variables increased R2 significantly (see Table 10). Study specific variables, socio-
economic and biographic variables, motivational factors and learning strategies explain
about half of the variance of maths performance at the beginning of the semester.

Detailed information on the four models with standardised regression coefficients
for all integrated predictors is given in Table 11.

Most important in all three models are the participation of the maths preparation
course (S1), having already taken the exam unsuccessfully (S2), the type of graduation
(B2) and maths grade in school (B7). Coefficients of these variables decrease slightly
when motivational variables are integrated (M1b); the influence of maths grade in

Table 10 Model comparison with πT1 as dependent variable at T1

Model Independent variables Adj. R2 Comparison F-statistic

M1a Si .117

M1b Si, Bi .395 M1a vs. M1b F(8,289) = 18.06; p < .001

M1c Si, Bi, Mi .448 M1b vs. M1c F(6,183) = 5.61; p < .001

M1d Si, Bi, Mi, Li .462 M1c vs. M1d F(5,278) = 2.48; p = .032
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school, especially, is decreasing. Maths self-efficacy and maths interest are significant
predictors of maths performance in both models. The only significant coefficient for
learning strategies in M1d we find for control strategies, but with a negative influence
on maths performance.

Results for T2

All correlation coefficients of variables at T2 among themselves and with maths
performance at T1 and T2 are presented in Table 14 (Appendix). Maths performance
at T1 correlates very strong with maths performance at T2 (r= .80). These results are
similar to results of correlational analysis of variables at T1. All motivational variables,
except perceived value of maths, correlate from moderately to strongly with maths
performance at T2. Type of graduation, elaboration and control strategies correlate
moderately with maths performance at T2. Effort, persistence and regularity of working
habits correlate moderately and positively with maths performance and strongly among

Table 11 Results of regression analyses at T1

Code Predictor Regressions predicting πT1 T1

M1a M1b M1c M1d

S1 participation preparation course .201*** .205*** .180*** .176***

S2 exam already taken .301*** .325*** .324*** .347***

S3 course of studies .105 .034 .041 .040

B1 gender -.098* -.072 -.039

B2 type of graduation .346*** .322*** .317***

B3 years since graduation .015 .015 -.005

B4 university degree parents -.104* -.099* -.099*

B5 apprenticeship -.094 -.061 -.046

B6 grade of graduation -.089 -.116* -.118*

B7 maths grade in school -.321*** -.147* -.155*

B8 migration background -.050 -.063 -.053

M1 maths self-efficacy .141** .132*

M2 maths self-concept .023 .005

M3 maths interest .160* .188**

M4 mastery goal orientation .023 .021

M5 maths anxiety -.047 -.040

M6 perceived value of maths -.034 -.015

L1 memorising strategies -.087

L2 elaboration strategies .054

L3 control strategies -.149*

L4 planning strategies .081

L5 heuristic strategies .038

Adj. R2 .117 .395 .448 .462

***: 0.1 %-level; **: 1 %-level; *: 5 %-level
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each other. Hours spent for preparation show no correlation with maths performance
and only weak correlations with other working habits. Use of assignments is the only
variable of use of support that correlates moderately with maths performance.

The estimation procedure for applying block regression for maths performance in T2
does not differ substantially. However, pre-knowledge measured by maths performance

Table 12 Model comparison with πT2 as dependent variable at T2

Model Independent variables Adj. R2 Comparison F-statistic

M2a πT1 .632

M2b πT1, Si .629 M2a vs. M2b F(3,125) = .65, p = .582

M2c πT1, Bi .664 M2a vs. M2c F(8,120) = 2.54; p = .014

M2d πT1, Bi, Mi .710 M2c vs. M2d F(6,114) = 4.167; p < .001

M2e πT1, Bi, Mi, Li .703 M2d vs. M2e F(5,109) = .463; p = .803

M2f πT1, Bi, Mi, Wi .741 M2d vs. M2f F(5,109) = 3.757; p = .004

M2g πT1, Bi, Mi, Wi, Ui .742 M2f vs. M2g F(7,102) = 1.076; p = .384

Table 13 Results of regression analyses at T2

Code Predictor Regressions predicting πk
T2

M2a M2c M2d M2f

πT1 maths performance at T1 .797*** .714*** .623*** .603***

B1 gender -.124* -.064 -.066

B2 type of graduation .182** .144** .153**

B3 years since graduation .042 .052 .062

B4 university degree parents .034 .038 .049

B5 apprenticeship .049 .094 .084

B6 grade of graduation -.125 -.165** -.160**

B7 maths grade in school -.035 .070 .047

B8 migration background -.055 -.036 -.036

M1 maths self-efficacy .067 .052

M2 maths self-concept .109 .153*

M3 maths interest .006 .011

M4 mastery goal orientation .033 -.020

M5 maths anxiety -.164** -.119*

M6 perceived value of maths -.070 -.079

W1 effort -.008

W2 persistence -.041

W3 regularity .233***

W4 preparation of lecture .031

W5 preparation of assignments -.054

Adj. R2 .632 .629 .710 .741

***: 0.1 %-level; **: 1 %-level; *: 5 %-level
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at T1 and the variables related to the blocks W and U are now integrated. Table 12
shows the comparisons of seven models with a successive integration of blocks of
variables. Maths performance at T1 explains over 60 % of the variance of maths
performance at T2 (M2a). The integration of study specific variables leads to an
increase of R2, but not significantly.

Model M2c shows that the successive integration of socio-economic and biographic
variables as well as the motivational variables (model M2d) raises R2 significantly. The
same holds for variables concerning working habits (model M2f). However, variables
concerning learning strategies (model M2e) as well as variables representing the use of
voluntary support (model M2g) do not increase R2 significantly. The final model M2f
explains about 75 % of the variance.

Detailed results for the models M2a, M2c, M2d and M2f with all variables are listed
in Table 13. As mentioned above, maths performance in T1 is the most important
predictor. Moreover, type and grade of graduation (B2, B6) are significant predictors.
The only significant predictors of the motivational variables are maths anxiety (M5)
and maths self-concept (M2, significant only in M2f). Working regularly on the weekly
assignments and lectures (W3) is the most important predictor of working habits. As in
the case of the estimates for T1 the matrix of correlation coefficients is inconspicuous.
Multicollinearity does not occur.

Discussion

In this section we discuss the final estimates for model M1d for T1 and model M2f for
T2 in more detail. It has to be stressed that the skills tests measure basic maths skills
that are subject of secondary school mathematics. Tasks do not require advanced
mathematical thinking. Therefore, applicability of the results of this study is limited.
Aspects dealing with the nature and teaching of mathematics need to be added in the
theoretical model in order to transfer it to achievement in pure mathematics.

Results for T1

At time T1, the maths skills of students are not influenced by the learning activities at
the university. However, there are two exceptions. Some students participated in a
preparation course before the semester started. Moreover, some participants did not
pass the exam one semester earlier and had to repeat the module. In both cases we
observe an expected positive influence. The regression coefficients for S1 and S2 are
positive and significant at the 1 %-level. These results indicate that the preparation
course helps students to refresh their basic maths skills, exactly as intended.

Students start their studies at university with very different educational backgrounds.
In particular, the success depends on the type of graduation. Two types have to be
distinguished in the case of the German educational system. The estimates show that
students who have obtained an ‘Abitur’ achieve significantly better test results at time
T1. The regression coefficient for B2 (‘Abitur’= 1; ‘FOS’= 0) is positive and
significant.

Furthermore, it appears that better school grades also imply better performance at
time T1. This holds for the grade in mathematics B7 (1=excellent; 5= insufficient) and

Int. J. Res. Undergrad. Math. Ed. (2017) 3:108–142 131



the final grade B6 (1=excellent; 5= insufficient). These results about the influence of
type of graduation and school grades are in accordance with the meta-analysis by
Robbins et al. (2004) who identified ACT/SAT scores and high school GPA as the
strongest predictors of college performance.

An academic background of the parents (B4) has a negative influence on the maths skills
of students. This is a surprising result. Here, further analysis is necessary to find explanations.

Regarding gender (B1; male=1, female=0), the number of years between the end of
secondary school and the start of the studies at the university (B3), apprenticeship (B5;
yes=1; no=0) and migration background (B8; yes=1; no=0) we found no significant
influence. The results for B3 and B5 do not support the results about non-standard students
by Faulkner et al. (2011). Students who probably have not engaged in mathematics for some
time (B3, B5) do not perform worse in the basic maths skills test at the beginning of the
semester, but correlation analysis shows that on average they have worse final grades and
maths grades, lower maths self-efficacy, lower maths self-concept and higher maths anxiety.
One possible explanationmight be that the influence of B3 andB5 ismediated by grades and
motivational variables. Further analysis (e.g. with structural equation modelling) is needed.

The non-significant influence of migration background could be interpreted in a
positive way. However, selection before starting university might be the reason.

Block M contains six variables representing motivational factors. Two of them show
a significant influence. Maths self-efficacy has a positive influence (M3; low=1;
high=8) on maths performance at T1 as well as maths interest M6 (low=1; high=6).
Both results are compatible with findings from empirical studies on secondary schooling
and higher education (see Multon et al. 1991; Laging 2016a). The other variables of this
block (maths self-concept, mastery goal orientation, maths anxiety, perceived value of
maths) have no significant influence in themultivariate regression analysis. The absolute
values of these correlation coefficients of these variables with mathematics performance
at T1 are between .20 and .39. But they also correlate moderately among each other and
with maths self-efficacy and maths interest. This is consistent with the theoretical
background. These constructs are distinct, but share several aspects. Especially self-
efficacy and self-concept are similar concepts. Consequently, it is not surprising that
they do not all show significant influence on maths performance in a multivariate
approach. From a theoretical and empirical perspective it is not clear which of these
variables is most important for performance. Many researchers (e.g., Bandura 1997;
Pajares andMiller 1994; Zimmerman 2000) argue in favour of self-efficacy, because it is
a more specific construct than self-concept. Our results for T1 support this conjecture.

Block L with a total of five variables reflects the learning strategies of students.
Clearly, at time T1 the variables map the learning behaviour the students applied at
school. Correlation analyses support the assumption of a positive relationship of deep
cognitive strategies (elaboration) and basic maths skills, and a negative relationship of
surface cognitive strategies (memorising) and basic maths skills. The correlation
coefficients are small and multivariate analysis does not support these findings. Only
the variable which represents control strategies has a statistically weak significant
negative influence when applying multivariate regression techniques.

Comparing the estimated regression coefficients for the different models, it turns out
that the inclusion of blocks does not have a major effect on magnitude and significance
of the factors. But this is not unexpected, because the inclusion of blocks M and L
increases R2 only slightly.
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In summary, it can be stated that in our study study-specific, biographical and
motivational variables determine the mathematical success at T1 with the type of
graduation as one of the most important factors. Students who start with ‘Abitur’ have
attended the preparation course more frequently, are stronger interested in mathematics
and have higher maths self-efficacy beliefs. Therefore, we have good and bad news. On
the one hand, we can show that the use of voluntary support has a positive effect. On
the other hand, the type of graduation remains of great importance.

Results for T2

The estimates for the final model M2f for T2 show similar results. Discussing the
results, we have to keep in mind that the skills test at T2 covers the topics which were
already relevant at T1. In both cases, all 30 tasks are related to secondary school maths.
However, at T2 we expect better maths skills for a number of reasons. First, in a period
of nine weeks between T1 and T2, students had the opportunity to refresh secondary
school maths in self-study. Second, we expect that working habits (block W) and the
use of support (block U) will have a positive influence on maths skills at T2 although
secondary school maths plays only a minor role in lectures and voluntary support.

First, the pre-knowledge measured by πT1 is the most important factor influencingmaths
skills at T2. This factor explains about 60% of the variance if only πT1 is taken into account
as a predictor (see model M2a). The strong influence is not surprising, because the period
between T1 and T2 is quite short and experience has shown that despite clear instructions,
students underestimate the importance of basic mathematical skills. Therefore, many
students spend only a very limited time and other resources in order to reduce deficits.
The results for T1 show thatmaths skills at T1 are partly explained by several variables. As a
consequence, πT1 is influenced by these variables. Further analyses, e.g. with structural
equation modelling, which require a larger sample, are needed to separate the influences.

In the estimates for πT2 we find no evidence for an influence of study-specific
effects. It is clear that the introduction of πT1 reduces the importance of the study-
specific variables. As before, however, the B variables play an important role. Again,
the type of graduation (B2; ‘FOS’ vs. ‘Abitur’) is crucial. Moreover, the final grade
(B6) has a significant influence, but not the grade in maths.

The inclusion of the motivational variables leads to a significant increase of R2. In
general, it is the same as in the case of T1. But in detail, the results are different. Here,
the factors maths concept (M2) and maths anxiety (M5) are significant at the 5 %-level.
This underlines the assumption that it is not clear which factor influences maths
performance the most, but in general self-belief is important.

The L block of variables representing learning strategies does not contribute to a
significant increase of R2. Correlation analyses show moderately positive correlations
between elaboration strategies (L2) and control strategies (L3) with maths skills at T2.
There is a moderately to high correlation of these strategies with motivational variables.
These results indicate that the learning strategies we measured do not contribute for the
explanation of maths skills at T2. The interpretation that learning strategies are not
important for developing maths skills would be prejudged. There might be other
reasons for these results. For example, it might be crucial how learning strategies are
measured and which specific learning strategies are chosen. Measuring learning strat-
egies by students’ ratings is problematic. Knowing specific strategies and applying
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these strategies are two different things. In addition, transition from school to university
requires several changes including adjusting learning strategies. The scales we use to
measure learning strategies might be inapplicable for this research. An examination of
strategies students really need and use to acquire basic maths skills at university would
be useful to adjust measurements of learning strategies.

The block ofW-variables that represent the working behaviour of the students increases
R2 significantly. Only regularity (W3) shows a significant positive influence on maths
skills in the multivariate approach. Correlation analyses show moderate correlations of
effort, persistence and regularity with maths performance at T2, but no correlation of
invested time and maths performance. Results of correlation analyses support research in
the domain of homework. For example, results of multilevel modelling show that
homework effort positively predicts maths achievement at the student level and time
spent on homework has a negative influence on maths achievement (Dettmers et al.
2010). Spending much time on assignments can be a result of high effort, but also of
lower cognitive abilities, missing knowledge, inappropriate learning strategies or missing
concentration. Trautwein and Köller (2003) suggest distinctions between time spent on an
assignment and time actively spent on it, and between time that is needed to complete an
assignment and time actually spent on finishing it.

The use of various kinds of voluntary support does not contribute to a significant
increase in R2. At first glance, this is surprising. However, a substantial explanation may
be that the voluntary support is only a limited form of assistance for the development of
basic mathematical knowledge. Most of the voluntary support is substantially aligned
with higher education mathematics, which covers most of the relevant topics of the
module. Furthermore, many students did not use voluntary support in the winter
semester 2011/12. One reason might be that most of the voluntary support services
were established for the first time in that semester. Research on the use of voluntary
support revealed that a small number of the students (especially students who have
already taken the exam) uses the various kinds of support extensively, but most students
use them rarely and irregularly (Laging and Voßkamp 2016).

To sum up, it can be stated that the mathematical skills at T2 are significantly influenced
by pre-knowledge, the type of graduation, the school grade, maths self-concept and regular
learning. Most of these variables represent students’ characteristics that are defined before
they start their studies. This underpins the experience of students and maths educators that
the negative effects of insufficient pre-knowledge and disadvantages due to educational
background cannot be overcome in a short period. However, students whose working
behaviour is characterised by regularity will show better results in maths performance.

Validity of the Models

It must be noted that the variables in M1d explain about 46 percent of variance in basic
maths skills at T1, but still this model cannot explain a large proportion of variance.
Consequently, factors have remained unconsidered or not sufficiently operationalised
which are essential for the explanation of mathematical performance. Against this
background, we cannot rule out that other variables mentioned in the model of SH
may play an important role, e.g. home and school variables.

The variables in M2f explain about 74 % of variance in basic maths skills at T1. The
inclusion of maths performance at T1 as an indicator for pre-knowledge increases R2
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substantially. A measure for pre-knowledge or cognitive ability to explain maths
performance at T1 should be considered. At T1 pre-knowledge is measured by type
of graduation and grades in school which are good predictors.

At both points of time, not all variables considered influence maths performance,
which is not surprising by applying multivariate regression analyses. Individual cog-
nitive and individual motivational determinants represented by a number of variables
are confirmed as important predictors of maths performance. The weak support for
learning activities as predictors might be due to the rare and irregular use of support
services in this sample. Several variables do not show the assumed influence on maths
performance as discussed above.

For our research, we adjusted the SH model to our sample. Therefore, several
determinants need to be considered to transfer the model to other samples. Within a
broad sample, variables measuring organization, climate and course context as well as
cultural backgrounds should be added. In addition, the nature of mathematics and the
way mathematics is instructed should be considered to capture specific issues of the
transition of school mathematics to university mathematics.

Conclusion

Summary

In this paper, we havemade an attempt to determine the predictors of mathematical skills
of first-year B&E students. Based on data from skills tests and questionnaires, regression
results have shown that for B&E students the type of graduation, the final school grade
and maths grades in school are very important predictors of maths performance when
they start their studies. Also, motivational variables contribute to the explanation of
maths performance. Other socio-economic and biographical variables do not play a
significant role. The same applies to the block of variables representing learning
strategies. Moreover, the multivariate regression analysis shows that the maths skills
in T1 representing pre-knowledge significantly influence the maths skills at T2.

Limitations

The results presented should be interpreted with reference to several limitations.
Sample: the sample includes only students of the University of Kassel. External

validity is therefore limited. However, we have no indications that the results presented
are driven by specific factors which would lead to biased results.

Measurement of mathematical achievements: the skills test covers different mathe-
matical competencies (e. g., Blum et al. 2010), but not to the same extent (Laging
2016b). An analysis for specific domains of competencies is not possible due to the
limited number of tasks. Moreover, we used classical test theory to construct the scales
representing maths performance.

Measurement of the independent variables: the variables, respectively scales, related
to the blocks M, L, W and U, have been created on the basis of proven and recognised
concepts. However, it should be noted that the scales are based on self-assessments.
Alternatives are not available in the framework of this approach.
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Method: theoretical basis of the estimates is a simple model based on the concept of
EPF. This simple model allows an empirical examination using regression techniques.
Note, however, that the relevant theoretical contributions underpin strong arguments for
the development of a path model or a structural equation model. In our case the number
of observations is too small in order to test such models empirically.

Implications

Beside the limitations, our analyses show that a broad range of variables determines
maths performance. For that reason, we can expect that numerous inventions exist
which will have a positive impact on maths skills of first-year students. However, we
can expect that an implementation of a single intervention will not cause a funda-
mental improvement of mathematics performance. Only a mix of interventions will
work. In addition, it should be noted that many interventions cannot be implemented
by the maths educators or the students. Universities are faced to many factors they
cannot control. In particular, this applies to factors which we take in the blocks S and
B into account. For example, (German) universities have only limited options to
define criteria for admission which affect the composition of the cohorts of the first-
year-students.

Despite these general remarks, from the perspective of lecturers and students our
analyses justify at least two concrete recommendations. First, our results show that
voluntary support can have a significant positive impact on maths performance. In our
case, this prevails especially for a preparation course. Second, our results show that
regular learning is of great advantage. The positive influence of regularity brings up the
question how incentives or command and control can force regularity. Further exams
and weekly compulsory assignments might be appropriate inventions.

Outlook

The results presented are a first step towards the explanation of mathematical skills of
first-year students. However, the identified limitations leave scope for further studies
that can be done only within the framework of a larger project.

An extension of the database by the inclusion of students at other universities is
desirable. This could in particular contribute to the external validity of the results.

The mathematical skills of students were measured using classical test theory. In a
further step the variables representing maths performance could be calculated in line
with item response theory (IRT). However, we do not expect significant changes of the
results.

The explanatory variables have been formulated on the basis of the question-
naires. The associated problems were mentioned. Using alternative methods would
improve the analysis. For example, learning diaries offer better opportunities to
capture the way students learn and work. However, this would go beyond the scope
of this project.

Finally, from a theoretical point of view an investigation of indirect effects of the
observed variables is desirable. This would drive the analyses towards structural
equation modelling. However, such a research strategy is only meaningful if the
analysis is not limited by the availability of data.
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Appendix

Fig. 5 Scatter plot (maths self-efficacy and maths performance at T1)

Fig. 6 Scatter plot (math performance at T1and math performance at T2)
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Table 14 Correlation coefficients

πT2 S1 S2 S3 B1 B2 B3 B4 B5 B6 B7 B8 M1 M2 M3 M4 M5 M6

πT1 .80 .14 .27 .15 -.05 .36 -.08 -.07 -.21 -.23 -.36 -.09 .44 .39 .28 .20 -.35 .00

S1 .08 -.22 .03 .09 -.02 -.04 -.01 .11 -.10 -.04 -.15 .07 .04 .02 .11 -.09 -.02

S2 .11 -.29 .14 -.01 .04 .11 .03 -.09 .04 .09 .08 .12 -.11 -.16 -.14 .07 -.10

S3 .19 .26 .12 -.12 -.18 -.09 -.03 -.28 .15 .05 .10 .09 -.03 -.08 -.07 -.14 -.07

B1 -.17 -.01 -.02 .19 .03 .02 -.09 .06 -.04 -.06 .03 -.09 -.06 .10 -.08 .20 .16

B2 .34 .00 -.04 .23 .02 .08 .05 -.17 .12 -.01 -.03 .12 .16 -.05 -.02 -.27 -.15

B3 -.04 .04 .23 -.18 .05 .04 .03 .43 .33 .21 .01 -.19 -.14 -.04 .09 .17 -.04

B4 .03 -.09 .14 .18 -.01 .25 -.06 -.01 -.01 .00 .04 -.03 -.01 -.01 -.01 -.05 -.09

B5 -.20 .11 -.16 -.34 .12 -.25 .48 -.11 .15 .12 -.11 -.25 -.12 -.08 .00 .15 -.17

B6 -.27 -.08 .27 .13 -.01 .13 .43 .11 .19 .53 .12 -.19 -.27 -.19 -.10 .11 -.11

B7 -.22 -.08 .29 .07 -.12 .15 .37 -.02 .14 .58 .06 -.37 -.60 -.51 -.26 .38 -.22

B8 -.10 -.17 .20 .17 .05 .01 -.11 .10 -.19 -.01 -.01 -.01 -.10 .08 -.03 .01 .12

M1 .42 -.13 .06 .16 -.33 .12 -.13 .10 .,34 -.04 -.16 .04 .54 .43 .33 -.43 .10

M2 .49 -.04 -.17 .11 -.14 .17 -.22 .01 -.31 -.20 -.42 -.07 .60 .62 .42 -.59 .07

M3 .33 -.12 -.22 -.17 .14 -.01 -.09 .00 -.03 -.26 -.48 -.12 .37 .58 .55 -.36 .35

M4 .34 .07 -.21 -.08 -.11 .02 .04 -.07 -.03 -.11 -.33 -.12 .44 .49 .62 -.32 .27

M5 -.54 -.17 .24 -.16 .11 -.19 .16 .02 .26 .19 .30 .07 -.48 -.57 -.42 -.42 .01

M6 .09 .03 -.08 -.02 .05 -.01 .00 -.15 -.09 -.11 -.26 -.09 .20 .36 .43 .45 -.15

L1 .05 -.15 .21 -.03 .01 -.01 -.03 .07 -.06 .05 -.03 .06 .29 .12 .18 .21 .04 .22

L2 .27 .02 -.08 .05 -.24 -.01 -.05 -.07 -.13 -.07 -.23 .13 .41 .43 .27 .52 -.27 .27

L3 .25 -.08 .13 .06 -.07 .13 .06 .14 -.11 .11 -.04 .02 .51 .33 .34 .52 -.29 .28

L4 .04 .02 -.04 -.08 .05 .07 .02 .04 -.08 .09 -.04 -.03 .27 .22 .19 .24 -.11 .17

L5 .00 .02 -.08 .04 .23 -.08 -.04 -.14 -.07 .03 -.11 .05 .10 .08 .16 .18 -.05 .17

W1 .37 .01 .14 .11 .05 .05 .10 .06 -.07 -.03 -.08 .04 .37 .28 .36 .49 -.34 .25

W2 .35 -.11 .05 .03 -.07 .05 .00 .10 -.17 -.01 -.15 .15 .54 .50 .46 .64 -.50 .28

W3 .37 .14 .12 .06 -.03 -.03 .05 -.07 -.02 -.02 -.02 .04 .25 .11 .19 .34 -.28 .13

W4 -.07 .02 .10 -.07 .01 -.12 .20 .05 .12 .10 .00 -.08 -.02 .02 .07 .22 -.04 .14

W5 -.06 .02 .31 -.16 .13 -.18 .23 .04 .07 .09 .10 .15 .02 -.16 -.06 .00 .09 -.01

U1 .00 .01 -.02 -.06 .13 -.11 .03 .03 -.03 -.03 .03 .18 -.07 -.08 .02 .02 .05 .01

U2 .01 .05 .10 -.07 .10 .02 .02 .07 .10 .05 .03 .10 -.18 -.07 -.04 -.05 .09 -.13

U3 .30 -.05 .15 -.05 -.06 .13 -.03 .11 -.10 -.08 .01 .08 .26 .17 .16 .29 -.13 .10

U4 .16 -.02 .42 -.03 .08 -.14 .08 .14 .01 .01 -.07 .10 .22 .01 .11 .14 .02 .09

U5 -.02 -.06 .24 -.17 .00 -.21 .18 .11 .03 .06 .04 .04 .01 -.17 -.01 .02 .12 -.02

U6 .05 .06 .36 .01 .08 -.17 .00 .23 -.08 .01 -.01 .09 .09 .01 .04 .01 -.01 .06

U7 .15 .09 .26 .18 .11 .04 .12 .08 -.04 .21 .06 .10 .14 -.03 -.03 .05 -.01 -.05

L1 L2 L3 L4 L5 W1 W2 W3 W4 W5 U1 U2 U3 U4 U5 U6

πT1 -.13 .18 -.01 .00 .07

S1 -.04 .11 .07 .09 .04

S2 .06 -.06 -.07 -.15 -.10

S3 -.06 .07 -.02 -.02 -.02

B1 .22 -.14 .23 .13 .21

B2 -.17 -.05 -.06 -.04 .01

B3 -.05 .02 .02 .09 .01

B4 -.03 -.04 -.03 -.01 .02

B5 .04 -.05 .03 .07 .00

B6 -.03 -.10 -.06 .05 -.02

B7 .00 -.16 -.18 -.03 -.10

B8 .07 -.03 .07 .00 .01

M1 .07 .36 .17 .13 .25

138 Int. J. Res. Undergrad. Math. Ed. (2017) 3:108–142



References

Acock, A. C. (2014). A gentle introduction to stata (4th ed.). College Station: Stata Press.
Ainley, M. D. (1993). Styles of engagement with learning: multidimensional assessment of their relationship

with strategy use and school achievement. Journal of Educational Psychology, 85(3), 395–405.
Anderson, G., Benjamin, D., & Fuss, M. A. (1994). The determinants of success in university introductory

economics courses. The Journal of Economic Education, 25(2), 99–119.
Anthony, G. (2000). Factors influencing first-year students’ success in mathematics. International Journal of

Mathematical Education in Science and Technology, 31(1), 3–14.
Arnold, I. J. M., & Straten, J. T. (2012). Motivation and math skills as determinants of first-year performance

in economics. The Journal of Economic Education, 43(1), 33–47.
Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioural change. Psychological Review,

84(2), 191–215.
Bandura, A. (1997). Self-efficacy. The exercise of control. New York: W. H. Freeman and Company.
Bausch, I., Biehler, R., Bruder, R., Fischer, P. R., Hochmuth, R., Koepf, W., Schreiber, W., & Wassong, T.

(Eds.). (2014). Mathematische Vor- und Brückenkurse: Konzepte, Probleme und Perspektiven
(Mathematical preparatory and bridging courses: concepts, problems and perspectives). Heidelberg:
Springer.

Blanchard, O., & Johnson, D. R. (2012). Macroeconomics. Boston: Pearson.
Blum, W., Drüke-Noe, C., Hartung, R., & Köller, O. (Eds.). (2010). Bildungsstandards Mathematik.

(Educational standards). Berlin: Cornelsen.
Boekaerts, M. (1999). Self-regulated learning: where we are today. International Journal of Educational

Research, 31, 445–457.
Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: how different are they really?

Educational Psychology Review, 15(1), 1–40.

Table 14 (continued)

L1 L2 L3 L4 L5 W1 W2 W3 W4 W5 U1 U2 U3 U4 U5 U6

M2 -.01 .25 .18 .16 .22

M3 .15 .33 .35 .19 .31

M4 .12 .43 .30 .27 .30

M5 .14 -.23 -.09 -.04 -.12

M6 .25 .25 .35 .23 .28

L1 .13 .48 .36 .35

L2 .14 .37 .31 .32

L3 .52 .41 .59 .55

L4 .29 .36 .48 .63

L5 .09 .13 .18 .37

W1 .28 .32 .63 .24 .15

W2 .33 .53 .69 .36 .22 .67

W3 .31 .15 .47 .19 .20 .72 .46

W4 .20 .08 .25 .12 -.07 .26 .18 .12

W5 .21 .03 .16 .03 -.06 .22 .06 .25 .26

U1 .11 .08 -.02 .09 -.01 .20 .08 .27 .16 .09

U2 .14 -.08 .01 -.07 -.02 .04 -.11 .17 .00 .22 .15

U3 .31 .13 .42 .18 .01 .52 .43 .62 .22 .28 .10 .17

U4 .29 .09 .40 .13 .02 .38 .22 .37 .26 .35 -.06 .17 .39

U5 .07 .04 .09 -.03 -.02 .18 .09 .23 .21 .23 .08 .03 .17 .39

U6 .16 .05 .17 .00 -.17 .26 .18 .13 .27 .26 .00 .02 .11 .39 .31

U7 .09 .00 .23 .21 .09 .17 .08 .21 .22 .19 .01 .08 .16 .41 .23 .21

Correlations coefficients for T1 are presented in the upper right corner of the matrix. Correlation coefficients
for T2 are presented in the lower left corner of the matrix. Example: The correlation coefficient for S1 and S2
is r = −.22 in T1 and r = −.29 in T2.

Int. J. Res. Undergrad. Math. Ed. (2017) 3:108–142 139



Brewer, D. J., Hentschke, G. C., & Eide, E. R. (2010). Theoretical concepts in the economics of education. In
D. J. Brewer & P. J. McEwan (Eds.), Economics of education (pp. 3–8). Amsterdam: Elsevier.

Bürgermeister, A., Kampa, M., Rakoczy, K., Harks, B., Besser, M., Klieme, E., Blum, W. & Leiß, D. (2011).
Dokumentation der Befragungsinstrumente des Laborexperimentes im Projekt ‘Conditions and
Consequences of Classroom Assessment (Co2CA)’ (Documentation of the survey instruments of the
laboratory experiment in the project ‘Conditions and Consequences of Classroom Assessment
(Co2CA)’). Frankfurt am Main: DIPF.

Chemers, M. M., Hu, L., & Garcia, B. F. (2001). Academic self-efficacy and first-year college student
performance and adjustment. Journal of Educational Psychology, 93(1), 55–64.

Chiang, A. C., &Wainwright, K. (2005). Fundamental methods of mathematical economics (4th ed.). Boston:
McGraw-Hill.

Chiu, M. M., & Xihua, Z. (2008). Family and motivation effects on mathematics achievement: analyses of
students in 41 countries. Learning and Instruction, 18, 321–336.

Clark, M., & Lovric, M. (2008). Suggestion for a theoretical model for secondary-tertiary transition in
mathematics. Mathematics Education Research Journal, 20(2), 25–37.

Demir, I., Kilic, S., & Depren, Ö. (2009). Factors affecting Turkish students’ achievement in mathematics.US-
China Education Review, 6(6), 47–53.

Dettmers, S., Trautwein, U., Lüdtke, O., Kunter, M., & Baumert, J. (2010). Homework works if homework
quality is high: using multilevel modeling to predict the development of achievement in mathematics.
Journal of Educational Psychology, 102(2), 467–482.

EACEA (Education, Audiovisual and Culture Executive Agency) (2015). Description of national education
systems. Germany. Resource document. https://webgate.ec.europa.eu/fpfis/mwikis/eurydice/index.
php/Germany:Redirect.

Elliot, A. J., Murayama, K., & Pekrun, R. (2011). A 3 X 2 Achievement goal model. Journal of Educational
Psychology, 103(3), 632–648.

Eurostat (2013). European systems of accounts. Luxembourg: Eurostat.
Faulkner, F., Hannigan, A., & Gill, O. (2011). The changing profile of third level service mathematics in

Ireland and its implications for the provision of mathematics education (1998–2010). In M. Pytlak, T.
Rowland, & E. Swoboda (Eds.), Proceedings of the 7th Conference of European Researchers in
Mathematics Education (pp. 1992–2001). Rzeszow, Poland.

Fischer, E., Bianchy, B., Biehler, R., Hänze, M. & Hochmuth, R. (2012). Lehrinnovationen in der
Studieneingangsphase ‘Mathematik im Lehramtsstudium’. Hochschuldidaktische Grundlagen,
Implementierung und Evaluation. Skalendokumentation (Teaching innovations in the first study phase
‘Mathematics in teacher training programmes’. Fundamentals, implementation and evaluation. Scales
documentation). Unpublished.

Gueudet, G. (2008). Investigating the secondary-tertiary transition. Educational Studies in Mathematics, 67,
237–254.

Hailikari, T., Nevgi, A., & Komulainen, E. (2008). Academic self-beliefs and prior knowledge of student
achievement in mathematics: a structural model. Educational Psychology, 28(1), 59–71.

Hattie, J. (2009). Visible learning. A synthesis of over 800 meta-analyses relating to achievement. Abingdon:
Routledge.

Helmke, A., & Weinert, F. E. (1997). Bindungsfaktoren schulischer Leistungen (Factors of school achieve-
ment). In F. E. Weinert (Ed.), Enzyklopädie der Psychologie, Band 3 (Psychologie der Schule und des
Unterrichts) (pp.71–176). Göttingen Hogrefe-Verlag.

Heublein, U. (2014). Student drop-out from German education institutions. European Journal of Education,
49(4), 497–513.

Hoppenbrock, A., Biehler, R., Hochmuth, R., & Rück, H.-G. (Eds.). (2016). Lehren und Lernen von
Mathematik in der Studieneingangsphase (Teaching and learning of mathematics in the first study phase).
Wiesbaden: Springer.

Huang, C. (2011). Achievement goals and achievement emotions: a meta-analysis. Educational Psychology
Review, 23(3), 359–388.

Klieme, E. (2006). Empirische Unterrichtsforschung: Aktuelle Entwicklungen, theoretische Grundlagen und
fachspezifische Befunde. Einleitung in den Thementeil (Empirical classroom research: current develop-
ments, theoretical background and specialist results). Zeitschrift für Pädagogik, 52(6), 765–773.

Kuh, G. D., & Hu, S. (1999). Unraveling the complexity of the increase in college grades from the mid-1980s
to the mid-1990s. Educational Evaluation and Policy Analysis, 21(3), 297–320.

Kunter, M., Schümer, G., Artelt, C., Baumert, J., Klieme, E., Neubrand, M., Prenzel, M., Schiefele, U.,
Schneider, W., Stanat, P., Tillmann, K.-J., & Weiß, M. (2002). PISA 2000: Dokumentation der

140 Int. J. Res. Undergrad. Math. Ed. (2017) 3:108–142

https://webgate.ec.europa.eu/fpfis/mwikis/eurydice/index.php/Germany:Redirect
https://webgate.ec.europa.eu/fpfis/mwikis/eurydice/index.php/Germany:Redirect


Erhebungsinstrumente (PISA 2000. Documentation of survey instruments). Materialien aus der
Bildungsforschung Nr. 72.. Berlin: Max-Planck-Institut für Bildungsforschung.

Laging, A. (2016a). A meta-analysis about the relation of self-efficacy beliefs and achievement in mathemat-
ics. In preparation.

Laging, A. (2016b). Stärke und Exaktheit der mathematischen Selbstwirksamkeitserwartungen bei
Studienanfänger/innen (Strength and accuracy of first-year students’ mathematical self-efficacy). In
preparation.

Laging, A., & Voßkamp, R. (2016). Identifizierung von Nutzertypen bei fakultativen Angeboten zur
Mathematik in wirtschaftswissenschaftlichen Studiengängen (Identification of user types in the case of
voluntary support services to mathematics in economics courses). In A. Hoppenbrock, R. Biehler, R.
Hochmuth, & H.-G. Rück (Eds.), Lehren und Lernen von Mathematik in der Studieneingangsphase (pp.
585–600). Wiesbaden: Springer.

Liston, M., & O’Donoghue, J. (2009). Factors influencing the transition to university service mathematics:
part I a quantitative study. Teaching Mathematics and Its Applications, 28, 77–87.

Ma, X. (1999). A meta-analysis of the relationship between anxiety towards mathematics and achievement in
mathematics. Journal for Research in Mathematics Education, 30(5), 520–540.

Multon, K. D., Brown, S. D., & Lent, R. W. (1991). Relation of self-efficacy beliefs to academic outcomes: a
meta-analytic investigation. Journal of Counseling Psychology, 38(1), 30–38.

OECD (Organisation for Economic Co-operation and Development) (2003). Literacy skills for the world of
tomorrow: Further results from PISA 2000. Paris: OECD

Pajares, F., & Miller, D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem
solving. A path analysis. Journal of Educational Psychology, 86(2), 193–203.

Pindyck, R., & Rubinfeld, D. (2013). Microeconomics. Global edition (8th ed.). Boston: Pearson.
Pintrich, P. R. (2000). An achievement goal theory perspective on issues in motivation terminology, theory,

and research. Contemporary Educational Psychology, 25(1), 92–104.
Rakoczy, K., Buff, A. & Lipowsky, F. (2005). Befragungsinstrumente. Teil 1. In Klieme, E., Pauli, C. &

Reusser, K. (Eds.). Dokumentation der Erhebungs- und Auswertungsinstrumente zur schweizerisch-
deutschen Videostudio ‘Unterrichtsqualität, Lernverhalten und mathematisches Verständnis’
(Documentation of the data collection and analysis tools for the Swiss-German video study ‘Teaching
quality, learning and mathematical understanding’). Materialien zur Bildungsforschung. Band 13.
Frankfurt am Main: DIPF.

Robbins, S. B., Lauver, K., Le, H., Davis, D., & Carlstrom, A. (2004). Do psychological and study skill factors
predict college outcomes? A meta-analysis. Psychological Bulletin, 130(2), 261–288.

Samuelson, P. (1948/1997). Economics: The original 1948 edition. McGraw-Hill Education.
Schiefele, U. (2009). Situational and individual interest. In K. R. Wentzel & A. Wigfield (Eds.), Handbook of

Motivation at School (pp. 197–222). New York: Routledge.
Schiefele, U., Streblow, L., Ermgassen, U., & Moschner, B. (2003). The influence of learning motivation and

learning strategies on college achievement: Results of a longitudinal analysis. German Journal of
Educational Psychology, 17(3/4), 185–198.

Schrader, F. W., & Helmke, A. (2015). School achievement: motivational determinants and processes.
International Encyclopedia of the Social & Behavioral Science, 21, 48–54.

Shavelson, R. J., Hubner, J. J., & Stanton, G. C. (1976). Self-concept: validation of construct interpretations.
Review of Educational Research, 46(3), 407–441.

Shell, D. F., Murphy, C. C., & Bruning, R. H. (1989). Self-efficacy and outcome expectancy mechanisms in
reading and writing achievement. Journal of Educational Psychology, 81(1), 91–100.

Simon, C. P., & Blume, L. (2010). Mathematics for economists. New York: Norton & Company.
Sonntag, G. (2016) Studienerfolg ohne allgemeine Hochschulreife? Wie Herkunft, Bildungsverlauf und

Wahlmotive den Studienerfolg beeinflussen (Academic success without higher education entrance qual-
ification? The impact of origin, course of education, and motivation for the study programme choice on
academic success). Marburg: Tectum Verlag.

Stanat, P., & Lüdtke, O. (2013). International large-scale assessment studies of student achievement. In J.
Hattie & E. M. Anderman (Eds.), International guide to student achievement (pp. 481–483). New York:
Routledge.

Strayhorn, T. L. (2013). Academic achievement. A higher education perspective. In J. Hattie & E. M.
Anderman (Eds.), International guide to student achievement (pp. 16–18). New York: Routledge.

Sydsaeter, K., & Hammond, P. (2012). Essential mathematics for economic analysis (4th ed.). Harlow:
Prentice Hall.

Tall, D. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal,
20(2), 5–24.

Int. J. Res. Undergrad. Math. Ed. (2017) 3:108–142 141



Thomas, M., de Freitas Druck, I., Huillet, D., Ju, M.-K., Nardi, E., Rasmussen, C., & Xie, J. (2012). Survey
team 4: key mathematical concepts in the transition from secondary to university. ICME12, Seoul, Korea.

Trautwein, U., & Köller, O. (2003). The relationship between homework and achievement – still much of a
mystery. Educational Psychology Review, 15(2), 115–145.

Voßkamp, R. (2016). Mathematics in economics study programmes in Germany: Structures and challenges.
khdm-report No. 5. In press.

Voßkamp, R., & Laging, A. (2014). Teilnahmeentscheidungen und Erfolg: Eine Fallstudie zu einem Vorkurs
aus dem Bereich der Wirtschaftsmathematik (Participation decisions and success: a case study on a
preparation course in the field of business mathematics). In I. Bausch, R. Biehler, R. Bruder, P. R. Fischer,
R. Hochmuth, W. Koepf, S. Schreiber, & T. Wassong (Eds.), Mathematische Vor- und Brückenkurse:
Konzepte, Probleme und Perspektiven (pp. 67–83). Heidelberg: Springer.

Vrugt, A., & Oort, F. J. (2008). Metacognition, achievement goals, study strategies and academic achievement:
pathways to achievement. Metacognition Learning, 30, 123–146.

Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary
Educational Psychology, 25, 68–81.

Wooldridge, J. M. (2015). Introductory economics (6th ed.). Mason: Thomson.
Zimmerman, B. J. (1990). Self-regulating academic learning and achievement: the emergence of a social

cognitive perspective. Educational Psychology Review, 2(2), 173–201.
Zimmerman, B. J. (2000). Self-efficacy. An essential motive to learn. Contemporary Educational Psychology,

25, 82–91.

142 Int. J. Res. Undergrad. Math. Ed. (2017) 3:108–142


	Determinants of Maths Performance of First-Year Business Administration and Economics Students
	Abstract
	Introduction
	Motivation
	Purpose of the Study
	Outline

	Empirical Background
	Theoretical Background
	General Remarks
	The Model by Schrader and Helmke (2015)

	The Model
	The Applicability of the Model of Schrader and Helmke for Higher Education Issues
	Need for a Simplification of the Model
	Education Production Functions (EPF)
	Operationalisation of Input and Outcome Variables
	A Comparison of the Variables Represented in the SH Model and the Simplified Model
	How to Operationalize the Blocks? First Remarks

	Method
	Mathematical Representation
	Linear Regression Models
	Nested Regression Methods

	Data
	General Setting
	Participants
	Skills Tests
	Questionnaires

	Independent and Dependent Variables
	Dependent Variables: Mathematical Achievement in T1 and T2
	Block S: Study-Specific Variables
	Block B: Socio-Economic and Biographic Variables
	Block M: Motivational Factors
	Block L: Learning Strategies
	Block W: Working Habits
	Block U: Use of Support

	Results
	Results for T1
	Results for T2

	Discussion
	Results for T1
	Results for T2
	Validity of the Models

	Conclusion
	Summary
	Limitations
	Implications
	Outlook

	Appendix
	References


