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Christian D. Jäkel∗ and Walter F. Wreszinski†

March 24, 2020

Abstract

We propose a criterion to characterize interacting theories in a
suitable Wightman framework of relativistic quantum field theories
which incorporates a “singularity hypothesis”, which has been conjec-
tured for a long time, is supported by renormalization group theory,
but has never been formulated mathematically. The (nonperturba-
tive) wave function renormalization Z occurring in these theories is
shown not to be necessarily equal to zero, except if the equal time
commutation relations (ETCR) are assumed. Since the ETCR are
not justified in general (because the interacting fields cannot in gen-
eral be restricted to sharp times, as is known from model studies), the
condition Z = 0 is not of general validity in interacting theories. We
conjecture that it characterizes either unstable (composite) particles
or the charge-carrying particles, which become infraparticles in the
presence of massless particles. In the case of QED, such “dressed”
electrons are not expected to be confined, but in QCD we propose a
quark confinement criterion, which follows naturally from lines sug-
gested by the works of Casher, Kogut and Susskind and Lowenstein
and Swieca.

1 Introduction

In his recent recollections, ’tHooft ([Hoo], Sect. 5) emphasizes that an asymp-
totic (divergent) series, such as the power series for the scattering (S) matrix
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in the coupling constant α = 1
137

in quantum electrodynamics (qed1+3) does
not define a theory rigorously (or mathematically). In the same token, Feyn-
man was worried about whether the qed S matrix would be “unitary at order
137” ([Wig67a], discussion on p. 126), and in Section 5 of [Hoo], ’tHooft re-
marks that the uncertainties in the S matrix amplitudes at order 137 for qed
are comparable to those associated to the “Landau ghost” (or pole) [Lan55].

The main reason to believe in quantum field theory is, therefore, in spite
of the spectacular success of perturbation theory ([Wei96b], Chap. 11 and
[Wei96a] Chap. 15), strongly tied to non-perturbative approaches.

In his famous Erice lectures of 1979 [Wig67b], ”Should we believe in
quantum field theory?”, Wightman remarks (p. 1011) that he once expressed
to Landau his lack of confidence in the arguments which he and his co-workers
had put forward for the inconsistency of field theory. “He then offered me the
following: You agree that the essential problem of quantum field theory is its
high-energy behavior? Yes. You agree that up to now no-one has suggested
a consistent high-energy behavior for quantum field theory? Yes. Then
you have to believe in the inconsistency of quantum field theory, because
physicists are smart and if there was a consistent high-energy behavior, they
would have found it!”

Landau’s remarks concern, in particular, quantum electrodynamics in
the Coulomb gauge in three space dimensions - qed1+3. He refers, as we do
throughout the paper, to “bona-fide” field theories in which cutoffs have been
eliminated, and are thus invariant under certain symmetry groups: “effec-
tive” field theories are thereby excluded. Our recent result [JW18], however,
establishes positivity of the (renormalized) energy, uniformly in the volume
(V ) and ultraviolet (Λ) cutoffs. This stability result may be an indication of
the absence of Landau poles or ghosts in qed1+3 . In order to achieve this,
the theory in Fock space (for fixed values of the cutoffs) is exchanged for a
formulation in which (in the words of Lieb and Loss, who were the first to
exhibit this phenomenon in a relativistic model [LL02]), “the electron Hilbert
space is linked to the photon Hilbert space in an inextricable way”. Thereby,
“dressed photons” and “dressed electrons” arise as new entities.

The above picture, required by stability, provides a physical character-
ization of the otherwise only mathematically motivated non-Fock represen-
tations which arise in an interacting theory ([Wig67b],[Wig79]). The non-
unitary character of the transformations to the physical Hilbert space, when
the space and ultraviolet cutoffs are removed, are intrinsic to the singular
nature of field theory, and never really belonged to the usual lore of (even a
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smart!) theoretical physicist (for an exception, see the book by G. Barton
[Bar63]), which might explain Landau’s remarks, as well as the fact that
the answer to the question posed in the title involves considerations both of
foundational and mathematical nature.

In this paper, we attempt to incorporate the findings of [JW18] in a proper
general framework. For this purpose, we suggest a criterion characterizing
interacting theories, incorporating a “singularity hypothesis” which has been
conjectured for a long time, is supported by renormalization group theory,
but has never been formulated mathematically. We do so in Definition 3.3.
With this hypothesis, it is possible to prove Theorem 3.4, which is our main
result. It permits to characterize interacting quantum field theories, in a suit-
able Wightman framework, by the property that the total spectral measure is
infinite. The (non-perturbative) wave-function renormalization occurring in
these theories, defined in Proposition 3.2, is shown not to be universally equal
to zero in interacting theories satisfying the singularity hypothesis, except if
equal time commutation relations (ETCR) are assumed (Corollaries 3.6 and
3.7). Since the ETCR are known, from model studies, not to be universally
valid, the physical interpretation of the condition Z = 0 is open to question.
We suggest that it may characterize either the existence of “dressed” parti-
cles in charged sectors, which may occur for specific theories such as qed1+3)
due to the presence of massless particles (the photon), by a theorem of Buch-
holz [Buc86], or unstable (composite) particles. The latter conjecture, due to
Weinberg ([Wei96b], p. 460), is, however, still unsupported by any rigorous
result.

In the case of qed1+3 , such “dressed” electrons are not expected to be
confined, but in qcd we propose a quark confinement criterion, which fol-
lows naturally from lines suggested by by the works of Casher, Kogut and
Susskind [CKS73], and Lowenstein and Swieca [LS71] in massless qed1+1

(the Schwinger model), in which the “dressing” of the electrons by photons
is rather drastic, the electron field being expressed entirely as a functional of
the photon field, which becomes massive.

2 The Field Algebra

In order to formulate the above-mentioned phenomena in qed1+3, we consider
a field algebra F0 ≡ {A0

µ, ψ
0, ψ̄0} (containing the identity) generated by the

free vector potential A0
µ, µ = 0, 1, 2, 3, and the electron-positron fields ψ0, ψ̄0.
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Wemay assume that the field algebra is initially defined on the Fock-Krein (in
general, indefinite-metric, see [Bog74]) tensor product of photon and fermion
Fock spaces. However, of primary concern for us will be an inequivalent
representation of the field algebra F0 on a (physical) Hilbert space H, with
generator of time-translations - the physical Hamiltonian H - satisfying pos-
itivity, i.e.,

H ≥ 0 , (1)

and such that
HΩ = 0 , (2)

where Ω ∈ H is the vacuum vector, and

Aµ ≡ Aµ(A
0
µ, ψ

0, ψ̄0) , (3)

Ψ ≡ Ψ(A0
µ, ψ

0, ψ̄0) , (4)

Ψ̄ ≡ Ψ̄(A0
µ, ψ

0, ψ̄0) . (5)

We may define, as usual, the (restricted) class of c-number U(1) local
gauge transformations, acting on F0, by the maps

A0
µ(f) → A0

µ(f) + c 〈f, ∂µu〉 , (6)

ψ0(f) → ψ0
(

eiuf
)

, (7)

ψ̄0(f) → ψ̄0
(

e−iuf
)

, f ∈ S(R1+s) . (8)

In qed, c = 1
e
and u satisfies certain regularity conditions, which guarantee

that

e±iuf ∈ S(R1+s) if f ∈ S(R1+s) , and |〈f, ∂µu〉| <∞ .

In the following, S denotes Schwartz space (see, e.g., [BB03]), 〈 . , . 〉 denotes
the L2(R1+s) scalar product and s is the space dimension. Such transforma-
tions have been considered in a quantum context, that of (massless) relativis-
tic qed in two space-time dimensions (the Schwinger model) by Raina and
Wanders, but their unitary implementability is a delicate matter [RW81]. We
shall use (6)–(8) merely as as a guiding principle to construct the observable
algebra, to which we now turn.

The observable algebra is assumed to consist of gauge-invariant objects,
namely the tensor fields

Fµ,ν = ∂µAν − ∂νAµ , (9)
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with Aµ given by (3), describing the dressed photons, and the quantities (10)
below. In order to define them, we assume the existence of gauge-invariant
quantities Ψ, Ψ̄ in (4), (5), which create-destroy electrons-positrons “with
their photon clouds”.

While we hope that the results in [JW18] will eventually lead to an (im-
plicit or explicit) expression for Ψ, Ψ̄, it should be emphasized that this is
a very difficult, open problem; see the important work of Steinmann in per-
turbation theory [Ste84]. We also note that when we consider the vacuum
sector, the fermion part of the observable algebra will be assumed to consist
of the combinations

A(f, g) ≡ Ψ̄(f)Ψ(g) with f, g ∈ S(R1+s) ,

B(f, g) ≡ Ψ(f)Ψ̄(g) with f, g ∈ S(R1+s) , (10)

The quantities A and B above stand for rigorous versions of quantities of the
form (12), smeared with functions f, g, which have never been constructed
except in the Schwinger model. The existence of charged sectors is a related
problem, which will concern us in Section 4.

3 A framework for relativistic quantum gauge

theories

In this paper we propose a framework which is not new, having been used by
Lowenstein and Swieca [LS71] and Raina and Wanders [RW81] to construct
a theory of qed1+1, the Schwinger model.

The theory will be defined by its n-point Wightman functions [SW64] of
observable fields. Alternatively, a Haag-Kastler theory [HK64] may be en-
visaged. It has been shown in the seminal work of the latter authors that
the whole content of a theory can be expressed in terms of its observable
algebra. In the case of gauge theories, the latter corresponds to the algebra
generated by gauge invariant quantities [SW74]. As remarked by Lowenstein
and Swieca [LS71], the observable algebra, being gauge-invariant, should have
the same representations, independently of the gauge of the field algebra it
is constructed from. Thus, n-point functions constructed over the observ-
able algebra should be the same in all gauges. These remarks fully justify
the usage of non-covariant gauges, which, as we shall see, are of particular
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importance in a non-perturbative framework. For scattering theory and par-
ticle concepts within a theory of local observables, see [AH67], [BPS91], and
[BS05] for a lucid review.

There exist various arguments supporting the use of non-covariant gauges
in relativistic quantum field theory: they are of both physical and mathe-
matical nature. In part one of his treatise, Weinberg notes ([Wei96b], p. 375,
Ref. 2): “the use of Coulomb gauge in electrodynamics was strongly advo-
cated by Schwinger on pretty much the same grounds as here: that we ought
not to introduce photons with helicities other than ±1”. Indeed, as shown by
Strocchi [Str70], a framework excluding “ghosts” necessarily requires the use
of non-manifestly covariant gauges, such as the Coulomb gauge in qed1+3, the
Weinberg or unitary gauge in the Abelian Higgs model [Wei73], and the Dirac
[Dir49] or light-cone gauge in quantum chromodynamics ([SB02], [Cor82]).
Another instance of the physical-mathematical advantage of a non-covariant
gauge is the “α =

√
π” gauge in massless qed1+1 - the Schwinger model

[Sch62] - see [LS71], [RW81]. As in the Coulomb gauge in qed1+3, there is no
need for indefinite metric in this gauge, i.e., the zero-mass longitudinal part
of the current is gauged away, and one has a solution of Maxwell’s equations
(as an operator-valued, distributional identity)

∂νF
µ,ν(x) = −ejµ(x) (11)

on the whole Hilbert space. This is an important ingredient in Buchholz’s
theorem [Buc86], to which we come back in the sequel.

The structure of the observable algebra is quite simple in the Coulomb
gauge: the field (9) is just the electric field, which is defined in terms of a
massive scalar field, the quantities (10) are, in this gauge, rigorous versions
of the (path-dependent) quantities

ψ(x)eie
∫
y

x
dtµ Aµ(t)ψ∗(y) (12)

and their adjoints (in the distributional sense), see [LS71] and [RW81]. In
the case of qed1+3, such quantities are plagued by infrared divergences, see
the discussion in [Ste84]. As a consequence of the simple structure of the
observable algebra, one arrives at a correct physical-mathematical picture of
spontaneous symmetry breakdown ([LS71],[RW81]); in covariant gauges this
picture is masked by the presence of spurious gauge excitations.

In [SW64], pp. 107-110, it is shown that if the (n-point) Wightman func-
tions satisfy
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a.) the relativistic transformation law;

b.) the spectral condition;

c.) hermiticity;

d.) local commutativity;

e.) positive-definiteness,

then they are the vacuum expectation values of a field theory satisfying the
Wightman axioms, except, eventually, the uniqueness of the vacuum state.
We refer to [SW64] or [RS75] for an account of Wightman theory, and for
the description of these properties. It has been shown in [LS71], [RW81]
that qed1+1 in the “α =

√
π” gauge satisfies a.) − e.). The crucial positive-

definiteness condition e.) has been shown in [LS71] to be a consequence of
the positive-definiteness of a subclass of the n-point functions of the Thirring
model [Thi58] in the formulation of Klaiber [Kla68]. Positive-definiteness of
the Klaiber n-point functions was rigorously proved by Carey, Ruijsenaars
and Wright [CJW85]. Uniqueness of the vacuum holds in each irreducible
subspace of the (physical) Hilbert space H [RW81], as a result of the cluster
property; see also [LS71].

We shall assume a.)−e.) for the n-point functions of the observable fields,
with, in addition, the following requirement

f.) interacting fields are assumed to satisfy the singularity hypothesis (the
forthcoming Definition 3.3).

The crucial mathematical reason for choosing a non-covariant gauge is, as
we shall see, the positive-definiteness condition e.). Concerning the unique-
ness of the vacuum, we shall assume it is valid by restriction to an irreducible
component of H, as in qed1+1.

3.1 The Källén-Lehmann representation

A major dynamical issue in quantum field theory is the (LSZ or Araki-Haag)
asymptotic condition (see, e.g., [BS05] and references given there), which
relates the theory, whose objects are the fundamental observable fields, to
particles, described by physical parameters (mass and charge in qed). This
issue is equivalent to the renormalization (or normalization) of perturbative
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quantum field theory, which itself is related to the construction of continuous
linear extensions of certain functionals, such as to yield well-defined Schwartz
distributions (see [Sch01] and references given there). On the other hand,
in a non-perturbative framework, a theory of renormalization of masses and
fields also exists, and “has nothing directly to do with the presence of infini-
ties” ([Wei96b], p. 441, Sect. 10.3). We adopt a related proposal, which we
formulate here, for simplicity, for a theory of a self-interacting scalar field A
of mass m satisfying the Wightman axioms (modifications are mentioned in
the sequel). We assume that A is an operator-valued tempered distribution
on the Schwartz space S (see [RS75], Ch. IX).

We have the following result, concerning the spectral representation of
the two-point function W2 ([RS75], p. 70, Theorem IX-34):

Theorem 3.1 (The Källén-Lehmann representation).

Wm
2 (x− y) = 〈Ω, A(x)A(y)Ω〉 = 1

i

∫

∞

0

dρ(m2
◦
) ∆m◦

+ (x− y) , (13)

where Ω denotes the vacuum vector, x = (x0, ~x), and

∆m◦

+ (x) =
i

2(2π)3

∫

R3

d3~k
e−ix0

√
m2

◦+~k2+i~x·~k

√

m2
◦
+ ~k2

(14)

is the two-point function of the free scalar field of mass m◦, and ρ is a
polynomially-bounded measure on [0,∞), i.e.,

∫ L

0

dρ(m2
◦
) ≤ C(1 + LN ) (15)

for some constants C and N . It is further assumed that

〈Ω, A(f)Ω〉 = 0 ∀f ∈ S . (16)

Note that (13) is symbolic; for its proper meaning, which relies on (15),
see [RS75]. In the next proposition, since there is only a finite number
of masses in nature, we assume a priori that the pure point part (which
could eventually include a dense point spectrum, i.e., accumulation points)
is, in fact, discrete, containing only a finite number of mass values. We
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further assume that this discrete part of the measure is associated with the
(renormalized) physical masses existent in nature, i.e., just one for a scalar
field (and latter the electron and the photon mass in qed). This assumption
is verified for the free fields (scalar, spinor, vector), with Z = 1.

It should be remarked that a scalar field of mass m creates, with non-
vanishing probability, the state of a particle of massm in the sense of Wigner
(see, e.g., [Wei96b]) from the vacuum. In particular, the electron in qed
is not a particle, although the photon is (expected to be) a particle. It
is nevertheless true that stability in [JW18] and [LL02] is achieved by the
introduction of “dressed photons”.

Proposition 3.2. For a scalar field of mass m ≥ 0, the measure dρ(m2
◦
)

appearing in the Källén-Lehmann spectral representation allows a decompo-
sition

dρ(m2
◦
) = Zδ(m2

◦
−m2) + dσ(m2

◦
) , (17)

where
0 < Z <∞ (18)

and
∫ L

0

dσ(m2
◦
) ≤ C1(1 + LN1) (19)

for some constants C1 and N1.

Proof. By the Lebesgue decomposition (see, e.g., Theorems I.13, I.14, p. 22
of [RS72])

dρ = dρp.p. + dρs.c. + dρa.c. , (20)

where p.p. denotes the pure point, s.c. denotes the singular continuous and
a.c. denotes the absolutely continuous parts of dρ. By the assumptions, the
pure point part of the measure is, in fact, discrete and, for a scalar field of
mass m, we obtain

dρp.p.(m
2
◦
) = Zδ(m2

◦
−m2) , (21)

where Z satisfies (18), and, by (15), (17) and (20), dσ satisfies (19).

Remark 3.1. Of course, Z = 0 in (21), if there is no discrete component
of mass m in the total mass spectrum of the theory. In general Z in each
discrete component of dρ has only to satisfy

0 ≤ Z <∞ , (22)
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because of the positive-definiteness conditions e.) (or the positive-definite
Hilbert space metric).

Remark 3.2. Expression (21) corresponds precisely to ([Wei96b], p. 461,
Equ. (10.7.20)). Thus, Proposition 3.2 is just a mathematical statement
of the nonperturbative renormalization theory, as formulated by Weinberg.
Thus, the physical interpretation of Z is that 0 < Z <∞ is the wave function
renormalization constant, due to the fact that the physical field Aphys is nor-
malized (or renormalized) by the one-particle condition ([Wei96b], (10.3.6))
which stems from the LSZ (or Haag-Ruelle) asymptotic condition (see also
Sections 2 and 5 of [BS05] and references given there for the appropriate
assumptions). A general field, as considered in (13), does not have this nor-
malization. By the same token, the quantity m2 in (21) is interpreted as the
physical (or renormalized) mass associated to the scalar field.

For Fµ,ν and Ψ, we have the analogues of (13), namely

〈Fµ,ν(x)Ω, Fµ,ν(y)Ω〉 =
∫

dρph(m
2
◦
)

∫

d3p

2p0
(−p2µgνν − p2νgµµ)e

ip·(x−y) , (23)

with µ 6= ν, no summations involved, and p0 =
√

~p 2 +m2
◦
. Denoting spinor

indices by α, β, we have

S+
α,β(x− y) = 〈Ω,Ψα(x)Ψ̄β(y)Ω〉 (24)

=

∫

∞

0

dρ1(m
2
◦
)S+

α,β(x− y;m2
◦
) + δα,β

∫

∞

0

dρ2(m
2
◦
)∆+(x− y;m2

◦
) ,

with dρph, dρ1, dρ2 positive, polynomially bounded measures, and ρ1 satisfy-
ing certain bounds with respect to ρ2 (see [Leh54], p. 350 for the notation).
Again, as in (21),

dρph(m
2
◦
) = Z3δ(m

2
◦
) + dσph(m

2
◦
) (25)

and
dρ1(m

2
◦
) = Z2δ(m

2
◦
−m2

e) + dσ1(m
2
◦
) , (26)

with me the renormalized electron mass, according to conventional notation.
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We have, by the general condition (22),

0 ≤ Z3 <∞ , (27)

0 ≤ Z2 <∞ . (28)

When Z3 > 0, the renormalized electron charge follows from ([Wei96b],
(10.4.18)). Assumption (16), which is also expected to be generally true
on physical grounds, becomes

〈Ω, Fµ,ν(f)Ω〉 = 0 ∀f ∈ S , (29)

〈Ω,Ψα(f)Ω〉 = 0 ∀f ∈ S and α a spinor index . (30)

In summary, Proposition 3.2 provides a rigorous (non-perturbative) defi-
nition of the wave-function renormalization constant. In the proof of Theo-
rem 3.1 ([RS75], p. 70), the positive-definiteness condition e.) plays a major
role. Thus, the definition of Z and its range (22) (which depends on the
positivity of the measure dρ) strongly hinge on the fact that the underlying
Hilbert space has a positive metric. Parenthetically, the positive-definiteness
condition on the Wightman functions is “beyond the powers of perturbation
theory”, as Steinmann aptly observes [Ste84].

3.2 The Singularity Hypothesis

As remarked in the introduction, one of the most important features of rela-
tivistic quantum field theory is the behaviour of the theory at large momenta
(or large energies). Renormalization group theory [Wei96a] has contributed
a significant lore to this issue (even if none of it has been made entirely rig-
orous): see, in particular, the paper of Symanzik on the small-distance be-
havior analysis of the two-point functions in relativistic quantum field theory
[Sym71]. It strongly suggests that the light-cone singularity of the two-point
functions of interacting theories is stronger than that of a free theory: this
is expected even in asymptotically free quantum chromodynamics, where
the critical exponents are anomalous. We refer to this as the “singularity
hypothesis”, which will be precisely stated in the next section.

3.2.1 Steinmann Scaling Degree and a theorem

In order to formulate the singularity hypothesis in rigorous terms, we recall
the Steinmann scaling degree sd of a distribution [Ste71]; for a distribution

11



u ∈ S ′

(Rn), let uλ denote the “scaled distribution”, defined by

uλ(f) ≡ λ−nu(f(λ−1·)) .

As λ → 0, we expect that uλ ≈ λ−ω for some ω, the “degree of singularity”
of the distribution u. Hence, we set

sd(u) ≡ inf
{

ω ∈ R | lim
λ→0

λωuλ = 0
}

, (31)

with the proviso that if there is no ω satisfying the limiting condition above,
we set sd(u) = ∞. For the free scalar field of mass m ≥ 0 in four-dimensional
space-time, it is straightforward to show from the explicit form of the two-
point function in terms of modified Bessel functions that

sd(∆+) = 2 . (32)

In (32), and the forthcoming equations, we omit the mass superscript. From
Theorem 3.1, we have that for f ∈ S(R4) the interacting two-point function
satisfies

W+(f) =

∫

∞

0

dρ(m2
◦
)

∫

R3

d~p
√

~p 2 +m2
◦

f̃

(

√

~p 2 +m2
◦
, ~p )

)

. (33)

Here f̃ ∈ S(R4) denotes the Fourier transform of f .

Definition 3.3. We say that the singularity hypothesis holds for an inter-
acting scalar field if

sd(W+) > 2 . (34)

Further support for Definition 3.3 comes from the fact that the singularity
hypothesis is indeed satisfied at finite orders of perturbation theory (if the
interaction density has engineering dimension larger than 2).

Theorem 3.4. If the total spectral mass is finite, i.e.,
∫

∞

0

dρ(a2) <∞ , (35)

then
sd(W+) ≤ 2 ; (36)

i.e., the scaling degree of W+ cannot be strictly greater than that of a free
theory, and thus, by Definition 3.3, the singularity hypothesis (34) is not
satisfied.
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Proof. The scaled distribution corresponding to W+ is given by

W+,λ(f) = λ−2

∫

∞

0

dρ(m2
◦
)

∫

R3

d~p
√

~p 2 + λ2m2
◦

f̃

(

√

~p 2 + λ2m2
◦
, ~p

)

. (37)

Assume the contrary to (36), i.e., that sd(W+) = ω0 > 2. Then, by the
definition of the sd, if ω < ω0, one must have

lim
λ→0

λωW+,λ(f) 6= 0 . (38)

Choosing
ω = ω0 − δ > 2 (39)

in (38), we obtain from (37) and (38) that

lim
λ→0

λω−2





∫

∞

0

dρ(m2
◦
)

∫

R3

d~p
√

~p 2 + λ2m2
◦

f̃

(

√

~p 2 + λ2m2
◦
, ~p

)



 6= 0 . (40)

The limit, as λ → 0, of the term inside the brackets in (40), is readily
seen to be finite by the Lebesgue dominated convergence theorem due to
the assumption (35) and the fact that f̃ ∈ S(R4); but this contradicts (38)
because of (39).

Corollary 3.5. The singularity hypothesis holds for an interacting scalar
field only if

∫

∞

0
dσ(m2

◦
) = ∞. This necessary condition is independent of the

value of 0 ≤ Z <∞.

One importance of the above theorem, which is our main result, and espe-
cially of its corollary is that it provides, as we shall see next, a mathematical
foundation for the forthcoming interpretation of the condition

Z = 0 . (41)

3.2.2 The ETCR hypothesis and its consequences for the singu-
larity hypothesis

For the purposes of identification with Lagrangian field theory, one may
equate the A(.) of (13) with the “bare” scalar field φB ([Wei96b], p. 439, see
also [IZ80] and [Haa96], whereby

A =
√
ZAphys (42)
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under the condition (18). Under the same condition (18), the assumption
of equal time commutation relations (ETCR) for the physical fields may be
written (in the distributional sense)

[

∂Aphys(x0, ~x )

∂x0
, Aphys(x0, ~y )

]

= − i

Z
δ(~x− ~y ) . (43)

Together with (13) and (42), (43) yields ([Wei96b], (10.7.18)):

1 =

∫

∞

0

dρ(m2
◦
) . (44)

Since dσ in (17) is a positive measure, we obtain from (44) the inequality

Z ≤ 1 (45)

([Wei96b], p. 361). We thus find, comparing (44) with corollary 3.5:

Corollary 3.6. The singularity hypothesis is incompatible with the ETCR
hypothesis. Thus, (45) is not generally valid.

In perturbation theory, Z3(Λ) ([Wei96b], p. 462) satisfies (45) for all ul-
traviolet cutoffs Λ, but it is just this condition which relies on the ETCR
assumption and is not expected to be generally valid. In the limit Λ → ∞,
however, Z3(Λ) tends to −∞ and hence violates (18) maximally. In fact,
(18) is violated even for finite, sufficiently large Λ.

Although Corollary 3.6 is strong, in that it excludes the ETCR entirely,
together with its consequences, it trivially implies that all values of Z com-
patible with (22) are allowed, without singling out the condition Z = 0.

In this connection, we should remark that the “bare” (conventional) field
(42) in (13) should not be identified with the Wightman field, because the
latter is supposed to have a particle interpretation, through scattering theory
(see Remark 3.2). This is due to the one-particle space normalization (see
also Jost’s monograph [Jos65], (1), p.120 for a detailed discussion of this point
in connection with the Haag-Ruelle theory). We are thus led to replace the
A on the l.h.s. of (13) by the physical, renormalized field (43). When (18)
holds, the resulting spectral measure is, of course, dg(m2

◦
) = 1

Z
dρ(m2

◦
) which

satisfies, by (44),
1

Z
=

∫

dg(m2
◦
) (46)
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(46) is Wightman’s (17) in his famous paper [Wig56]. The same formula is
found in Lehmann [Leh54], Källén [K5̈3], and Barton [Bar63]. Of course,
Theorem 3.2 remains valid as long as (18) holds. As a consequence, we have
the following result:

Corollary 3.7. If, in (13), the field A is assumed to be the physical field
(42), and the ETCR (43) is assumed as well, only the value Z = 0 remains
in (22) as possibly compatible with the singularity hypothesis.

It is (46) which seems to underlie the general belief that Z = 0 is gener-
ally true in an interacting theory, a conjecture which has been made even,
for instance, by the great founders of axiomatic (or general) quantum field
theory, Wightman and Haag. Indeed, in [Wig67b], p. 201, it is observed
that “

∫

∞

0
dρ(m2

◦
) = ∞ is what is usually meant by the statement that the

field-strength renormalization is infinite”. This follows from (46), with “field-
strength renormalization” interpreted as 1

Z
. The connection with the singu-

larity hypothesis comes next ([Wig67b], p. 201), with the observation that, by
(13),W2 will have the same singularity, as (x−y)2 = 0, as does ∆+(x−y;m2).
As for Haag, he remarks ([Haa96], p. 55):“In the renormalized perturbation
expansion one relates formally the true field Aphys to the canonical field A

(our notation) which satisfies (43), where Z is a constant (in fact, zero). This
means that the fields in an interacting theory are more singular objects than
in the free theory, and we do not have the ETCR.”

Although both assertions above seem to substantiate the conjecture that
Z = 0 is expected to be a general condition for interacting fields, it happens,
however, that the resulting “∞ × δ” behavior of (43), while suggestive, is
entirely misleading. In other, equivalent, words, the relation (46) is rigorously
justified if

∫

dg(m2
◦
) < ∞ as shown by Wightman in [Wig56], p. 863, but

in the opposite case
∫

dg(m2
◦
) = ∞, as required by Theorem 3.2, (46) is

misleading, as the example in ([Wig56], p. 863) demonstrates.
It follows from Corollary 3.6 and Corollary 3.7 that for both choices of

fields in (13), Z = 0 is not generally true. The latter case hinges on the fact
that the ETCR is not generally valid for interacting fields, as briefly reviewed
in the forthcoming paragraph. We conclude that the singularity hypothesis
opens the possibility of the non-universal validity of the equation Z = 0.

The hypothesis of ETCR has been in serious doubt for a long time, see,
e.g., the remarks in [SW64], p. 101. Its validity has been tested [Wre71]
in a large class of models in two-dimensional space-time; the Thirring model
[Thi58], the Schroer model [Sch63], the Thirring-Wess model of vector mesons
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interacting with zero-mass fermions (see [TW64], [DT67]), and the Schwinger
model [Sch62], using, throughout, the formulation of Klaiber [Kla68] for the
Thirring model, and its extension to the other models by Lowenstein and
Swieca [LS71] - for the Schwinger model, the previously mentioned nonco-
variant gauge “α =

√
π” was adopted. Except for the Schwinger model,

whose special canonical structure is due to its equivalence (in an irreducible
sector) to a theory of a free scalar field of positive mass, the quantity

{ψ(x), ψ(y)} − 〈Ω, {ψ(x), ψ(y)}Ω〉 · 1 , (47)

where the ψ’s are the interacting fermi fields in the models and { . , . } de-
notes the anti-commutator and Ω denotes the vacuum, do not exist in the
equal time limit as operator-valued distributions, for a certain range of cou-
pling constants. Two different definitions of the equal time limit were used
and compared, one of them due to Schroer and Stichel [SS68]. The models
also provide examples of the validity of the singularity hypothesis (for the
currents, analogous assertions hold if the commutator is used in place of the
anti-commutator). Thus, the ETCR is definitely not true in general.

Although (see Remark 3.2), when 0 < Z <∞, Z is interpreted as the non-
perturbative field strength renormalization, relating “bare” fields to physical
fields, as in (43), the remaining case (41) remains to be understood. As stated
in ([Wei96b], pg. 461), “the limit Z = 0 has an interesting interpretation
as a condition for a particle to be composite rather than elementary”. This
brings us to our next topic.

4 A proposal for the meaning of the condi-

tion Z = 0: the presence of massless and

unstable particles

Buchholz [Buc86] used Gauss’ law to show that the discrete spectrum of the
mass operator

PσP
σ =M2 = P 2

0 − ~P 2 (48)

in a charged sector is empty. Above, P 0 is the generator of time translations
in the physical representation, i.e., the physical hamiltonian H , and ~P is the
physical momentum. This fact is interpreted as a confirmation of the phe-
nomenon that, in a charged sector, and given certain interactions (satisfying
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Gauss’ law) between massless particles and others carrying an electric charge,
the latter are converted to infraparticles and are accompanied by clouds of
soft photons.

Buchholz formulates adequate assumptions which must be valid in order
that one may determine the electric charge of a physical state Φ with the
help of Gauss’ law

e〈Φ, jµΦ〉 = 〈Φ, ∂νFν,µΦ〉 . (49)

(49) is assumed to hold in the sense of distributions on S(Rn).
When endeavouring to apply Buchholz’s theorem to concrete models such

as qed1+3, problems similar to those occurring in connection with the charge
superselection rule [SW74] arise. The most obvious one is that Gauss’ law
(49) is only expected to be valid (as an operator equation in the distributional
sense) in non-covariant gauges (see (11)). Recalling (28), we find that, in
an interacting theory satisfying the axioms a.) to f.) for observable fields,
in which massless particles (photons), as well as infraparticles (“electrons
with their photon clouds”) occur in a charged sector - that is, in quantum
electrodynamics in Buchholz’s characterization [Buc86]-, we have:

Corollary 4.1.
Z2 = 0 . (50)

It is interesting to recall, in connection with Corollary 4.1, that in [JW18],
both the photon field and the electron-positron field are “dressed”. The
photon is, however, believed to be a particle [PD], and it might be expected
that the “clouds” around the photon vanish asymptotically. Indeed, the
condition Z3 = 0 does not characterize massless particles (photons), see
[Buc77]; only (27) remains true.

We now return to the subject of composite or unstable particles. Clas-
sically speaking, these are particles whose field does not appear in the La-
grangian ([Wei96b], p. 461, [Wei62]). We were, however, unable to render
this notion precise even in the classical case (and we thank the referee for
convincing us of this fact).

There are, as yet, no rigorous results on the quantum theory, except for
cutoff theories, see [ABFG11] and references given there. Since the very
notion of particle involves the Poincaré group, there are serious difficulties
with the concept of unstable particle in a theory where the cutoffs are not
removed. For a model of Galilei invariant molecular dynamics with particle
production, see [HoJa95].
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The condition Z = 0 appears, however, in various non-rigorous ap-
proaches to the concept of unstable particle [Luk69], [Vel63], [A.L65]. Turn-
ing to scalar fields for simplicity, we consider the case of a scalar particle
C, of mass mC , which may decay into a set of two (for simplicity) stable
particles, each of mass m. We have energy conservation in the rest frame of
C, i.e.,

mC =

2
∑

i=1

√

~qi
2 +m2

i ≥
2

∑

i=1

mi ,

with mi = m, i = 1, 2, and ~qi the momenta of the two particles in the rest
frame of C:

mC > 2m . (51)

In order to check that
ZC = 0 (52)

when (51) holds, while 0 < ZC < ∞ is valid in the stable case mC < 2m,
in a model, we are beset with the difficulty to obtain information on the
two-point function. An exception are those rare cases in which the (Fock)
zero particle state is persistent ([Hep69]),i.e., Lee-type models.

The quantum model of Lee type of a composite (unstable) particle, sat-
isfying (51), where (52) was indeed found, is that of Araki et al. [AMKG57].
Unfortunately, however, the (heuristic) results in [AMKG57] have one major
defect: their model contains “ghosts”. The paper [HJ60], cited by Wein-
berg, assumes, however, the inequality opposite to (51), and so is concerned
with stable particles. In fact, their reference to (51) treats it as the general
conjecture based on [Wig56] and [K5̈3] previously referred to.

There exists, however, a ghostless version of of the model treated heuristi-
cally in [AMKG57], with the correct kinematics, due to Hepp (Theorem 3.4,
p. 54, of [Hep69]). In this version, the masses in (51), which are, of course,
renormalized masses, may be determined rigorously from the selfadjointness
of the renormalized Hamiltonian. It is an open problem of great importance
to carry out this investigation in detail: it would be the first rigorous model
of unstable (composite) particles in quantum field theory.

For atomic resonances, the model in [AMKG57] may be treated rigorously,
see [Wre].
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5 A proposal for a criterion for quark confine-

ment in quantum chromodynamics (qcd)

The fundamental objects of quantum chromodynamics (qcd) ([Wei96a], Sec-
tion 18.7) are the color gauge-covariant field strength tensor F µν

a , where
a = 1, 2, 3 is the colour index and µ, ν are Minkowski space indexes, and
the quark field Ψa. The color gauge vector potential Aµ

a describes mass-
less gluons. The unobservability of quarks has never been explained, but,
in the seventies and eighties, several models, notably the Schwinger model
[Sch62], i.e., the electrodynamics of massless electrons in two spacetime di-
mensions, have been suggested as models of the confinement of quarks. In
this model, the rigorous version of the observable (12) ([LS71], Section IV)
is a bilocal quantity which creates a charge dipole with an electric field in
between, according to Gauss’ law: this picture has been analysed in great
detail by Casher, Kogut and Susskind [CKS73]. The electron field becomes
a functional of the photon field, which acquires a positive mass: let the cor-
responding field at time zero be denoted by φ. If Ω is the Fock vacuum, we
define the dipole state (corresponding to placing the “string” at time t = 0;
we omit the time variable for simplicity):

ΨR,ǫ = TR,ǫΩ (53)

where
TR,ǫ = exp[i

√
π π(gR,ǫ)] . (54)

Above π denotes the field momentum operator at zero time, conjugate to φ
and gR,ǫ is the function

gR,ǫ(x) =

{

1 if 0 ≤ x ≤ R ;

0 if x ≤ −ǫ or x ≥ R + ǫ .
(55)

The above definitions follow [LS71], pp. 183–185, to which we refer the reader
for more details, except that we introduced ǫ > 0 fixed and let R → ∞, for
reasons of rigor. The connection between φ and the electric field (electro-
magnetic field tensor F01) at time zero is thereby given as

φ(x) = F01(x) . (56)

As in ([BW86], Appendix A, where in (A.1) the mass term should be replaced
by e2

π
φ(x, 0)2 inside the Wick dots), we consider the family of states

ωR,ǫ( · ) = 〈ΨR,ǫ, ·ΨR,ǫ〉 (57)
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on the Weyl CCR algebra generated by exp(iφ(f)) and exp(iπ(g)), f, g ∈
S0
R
(R), the Schwartz space of real valued functions on the real line, whose

Fourier transform vanishes at the origin. By compactness (Theorem 2.3.15
of [BR87]) there exists at least one limit in the weak* topology:

ωǫ = lim
R→∞

ωR,ǫ . (58)

The generator H of time translations in the Fock (vacuum) representation is
given by

H =
1

2

∫

dx :[π2(x) + (∇φ)2(x) +m2φ2(x)]: . (59)

Above, the dots indicate Wick ordering and

m =
e√
π

(60)

is the dynamically generated photon mass, whose origin is topological (see
the preface of [FJ82] and [Swi77], p. 317). Let V (g) = exp(iπ(g)). Using

: φ(x)2 := lim
x1,x2→x

[φ(x1)φ(x2)− 〈Ω, φ(x1)φ)(x2)Ω〉1]

and similarly for : ∇(φ)2(x) :, we obtain

V (h)−1H(x)V (h) = H(x)−∇h(x)·∇φ(x)+1

2
(∇h)2(x)+e

2

π

(

h2(x)−2h(x)φ(x)
)

from which a.) of the following proposition follows:

Proposition 5.1.

a.)

〈ΨR,ǫ, HΨR,ǫ〉 =
π

2

∫ +∞

−∞

dx
(

g
′

R,ǫ)
2(x) +

e2

π
g2R,ǫ(x)

)

;

where the prime above denotes the derivative;

b.) Any state ωǫ, defined by (58), has unit charge.

Proof. See Proposition A.1 of Appendix A of [BW86] for the definition of
charge and the proof of item b.).

The above proposition suggests the following definition:
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Definition 5.2. We say that ωǫ has finite energy if ΨR,ǫ lies in the quadratic
form domain of H for any R <∞ and ǫ > 0, and

lim sup
R→∞

〈ΨR,ǫ, HΨR,ǫ〉 <∞ . (61)

If ωǫ does not have finite energy (with respect to the vacuum, which has by
definition energy zero), i.e., if

lim sup
R→∞

〈ΨR,ǫ, HΨR,ǫ〉 = ∞ , (62)

we say that the associated fermions are confined.

By [BW86], Proposition A.2 of Appendix A, the representation defined
by ωǫ is inequivalent to the Fock (vacuum) representation. This result follows
from the fact that the state corresponds to a nonzero eigenvalue, namely one,
of the charge operator, but is not due to the existence of a macroscopic energy
barrier between ωǫ and the vacuum state. Indeed, when charged particles
exist, a system containing a finite number of these charged particles should
have finite energy relative to the vacuum, which is normalized to zero: this is
the physical meaning of (61); this condition is satisfied in the Streater-Wilde
model of soliton sectors, where the analogue of the l.h.s. of (61) is seen to be
identical to the energy of classical soliton solutions of the two-dimensional
wave equation [SW70]. Note, however, that in their model the scalar field is
massless. In our case we have the following corollary of Proposition 5.1:

Corollary 5.3. In the Schwinger model, Definition 5.2 implies that the
fermions are confined.

Proof. The first term in the r.h.s. of a.) of Proposition 5.1 is uniformly
bounded in R, the second is, by (55),

Ed ≡
∫

∞

−∞

dx 〈ΨR,ǫ, : F01(x)
2 : ΨR,ǫ〉 ≥ const. R. (63)

(63) implies (62) and thus the fermions are confined.

Corollary 5.3 provides the following physical interpretation for the mass
term in the Schwinger model (see also [CKS73]) as R → ∞: it represents the
energy of a dipole in the non-relativistic limit, since, in one dimension, the
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Coulomb potential is linear. In general, we have the following distributional
formula ([GC62], p. 361):

F(|~p|λ) = const. |~x|−λ−s , (64)

where F denotes the distributional Fourier transform, and s the space di-
mension.

For Reλ ≤ −s the function |p|λ is not locally integrable, but it defines a
distribution in the sense of Guelfand and Chilov (see [GC62], p. 71).

If λ = −2 and s = 1, we have the present case. If s = 3, we find R−1

for large R as expected. In the non-abelian case, we would have in (63),
: F a

µν(x)F
µν
a (x) : instead of : F01(x)

2 :, where the summation over the color
index a is understood. Due to the A ∧ A term in the gluon field tensor,
we have in (64) the leading infrared singularity with λ = −4 as |~p| → 0,
which implies the same linear behavior as (63)! Thus, if observable fields of
type (10) may be constructed for qcd, whereby f and g would have compact
support around points growing linearly with a parameter R along a radial
direction, yielding a quark-antiquark pair, and if the present analogy is sound,
one expects confinement. Definition 5.2 would have, however, to allow for
a “path” dependence of the l.h.s. of (62) and require the validity of (62)
independently of the “path”.

It should be remarked that in qcd it is not the fermion number which is
expected to be confined, but color, which is a multiplicative charge. A very
interesting soluble abelian model of triality (“charm”, an abelian version of
the three color states of a free quark) is found in Casher, Kogut and Susskind
[CKS73]: all states of nonzero “charm” are confined.

It was Casher, Kogut and Susskind [CKS73] who first proposed that the
deep inelastic structure functions of the theory might have the scaling laws
of the underlying Fermi fields in the Schwinger model, although only massive
Bosons appear as asymptotic states. This was proved by Swieca: the short-
distance limit of the n-point functions of the observables in the model are
those of a free theory of charged massless fermions and massless photons
([Swi77], p. 317).

In qcd it was already suggested by Cornwall in 1982 [Cor82] that a gluon
mass is dynamically generated. He used the Dirac or light-cone gauge, in
which ghosts are absent. Further work in covariant gauges suggests that,
the dynamically generated gluon mass is primarily due to the simplest severe
infrared singularity |~p|−4 mentioned above [Gog04], see also [BG]. If this were
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so, the analogy between qcd and the Schwinger model would be complete: the
short-distance limit would imply the vanishing of the dynamically generated
gluon mass, and, with it, the quarks would reappear as free particles, together
with massless gluons. Note that due to (60), there is no interaction in the
limit when the dynamically generated mass of the photon tends to zero:
there is “asymptotic freedom”. The scaling dimension of the gluon fields is,
however, expected to be anomalous, as previously observed.

The gluon mass also fits well in the general conjecture of the mass gap
in general Yang-Mills theories, see the problem posed by Jaffe and Witten
in [JW].

6 Conclusion

We have suggested a criterion which characterizes interacting theories in a
proper Wightman framework, based on a “singularity hypothesis”. The as-
sociated framework relies on the axioms for the Wightman n-point functions
for observable fields, including positivity, and thus requires the use of non-
covariant gauges. The singularity hypothesis is either incompatible with the
ETCR (Corollary 3.6) or requires that the (nonperturbative) wave function
renormalization constant Z equals zero, if the ETCR is assumed (Corol-
lary 3.7), depending on which type of field - the “bare”( conventional), or
the physical (renormalized) field in Lagrangian perturbation theory is iden-
tified with the Wightman field in the theory proposed in [Wig56].

Since the ETCR is generally not valid for interacting field theories, this
opens up the possibility that the condition Z = 0, assumed to be universal
for interacting theories, is of specific nature. We propose that it describes
“dressed” infraparticles (in the presence of massless particles) in certain spe-
cific theories, such as quantum electrodynamics in Buchholz’s characteriza-
tion [Buc86], or of composite (unstable) particles.

Since the gluons are massless, “dressed” quarks and gluons may occur in
the theory of strong interactions. A proposed caricature of (some aspects of)
qcd such as quark confinement is the Schwinger model revisited in Section 5.
There, the “dressing” of the electrons assumes a drastic form: by Bosoniza-
tion, the electron field is a functional of the photon field, which acquires a
mass. We propose a criterion of confinement which is valid in this model, and
whose extrapolation to qcd, if valid, predicts a surprisingly realistic picture.
It is important that this conjectured extrapolation depends on a description
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in terms of observables (compare ref. [Buc96]), whose role in the Schwinger
model was emphasized by Lowenstein and Swieca [LS71]. Accordingly, in
qcd, we also expect the analogue(s) of the condition Z = 0 due to the mass-
less gluons; the Schwinger model is, however, canonical, as explicitly verified
in [Wre71]. This is due to the fact that the “dressing”of the electrons by the
photons is such that, apart from the θ angle characterizing the irreducible
representation, they entirely disappear from the picture, originating a free
theory of (massive) photons in Fock space, and thereby accounting for the
model’s dynamical solubility. An example of a canonical interacting field
theory, for entirely different reasons, is given in [JM17].

The proposed framework poses several difficult problems. The construc-
tion of the “dressed” observables remains open even in qed1+3, in spite of the
results in [JW18]. In qcd, the methods of [JW18] are not directly applicable,
due to the gluon self-interaction.

In [Swi77], there is a final remark: “After almost a century of existence
the main question about quantum field theory seems still to be: what does
it really describe? and not yet: does it provide a good description of na-
ture?”. The fact that all but the lightest particles are unstable and there
is as yet no rigorous model in quantum field theory to describe them (see
the end of Section 4) is a clear instance of the fact that quantum field the-
ory has lost contact with its prime object of study, the elementary particles,
and therefore with nature itself. As an important subarea of mathematical
physics, it seems to have moved in the direction contrary to Geoffrey Sewell’s
suggestion that “in the words ‘mathematical physics’, ‘physics’ is the noun
and ‘mathematical’ is the adjective”. If this tendency can be inverted, it
may even be hoped that, in spite of all the difficulties — those mentioned
above, concerning our approach, as well as others ([JW], [MSY06], [Fre86])
— the question whether we should believe in quantum field theory posed by
Wightman in the title of [Wig67b] may be answered in the affirmative.
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