Skip to main content

Advertisement

Log in

A Polysaccharide-based Hydrogel and PLGA Microspheres for Sustained P24 Peptide Delivery: An In vitro and In vivo Study Based on Osteogenic Capability

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A bone morphogenetic protein-2(BMP-2) derived synthetic oligopeptide, S[PO4]KIPKASSVPTELSAI-STLYLDDD(P24), has shown great potential for facilitating bone regeneration. However, P24 cannot be directly used onto bone defects, while a continuous sustained delivery of P24 may lead to a better formation of bone tissue. Based on this issue, we have developed a sustained delivery system incorporating P24-loaded poly(lactide-co-glycolide) (PLGA) microspheres and nano-hydroxyapatite(n-HA) into the composite hydrogel. The P24-contained compound material was characterized with NMR, FTIR and SEM to demonstrate the formation of compound structure containing P24, PLGA and n-HA. A continuous drug release of P24 was observed for over 60 d that evidently enhanced the efficiency in promoting the proliferation of MC3T3-E1 cells and the secrete of alkaline phosphatase(ALP) in vitro. Moreover, the osteoinduction effect of the hydrogel system with P24 peptide microspheres was demonstrated in vivo and manifested by the result of immunohistochemistry. This novel injectable composite hydrogel is expected to be applied to improving the bone defect treatment in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Russell N., Oliver R. A., Walsh W. R., Biomaterials, 2013, 34, 8185

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y., Venugopal J. R., El-Turki A., Ramakrishna S., Su B., Lim C. T., Biomaterials, 2008, 29, 4314

    Article  CAS  PubMed  Google Scholar 

  3. Shapiro J. M., Oyen M. L., JOM, 2013, 65, 505

    Article  CAS  Google Scholar 

  4. Park H., Temenoff J. S., Tabata Y., Caplan A. I., Mikos A. G., Biomaterials, 2007, 28, 3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park K. M., Joung Y. K., Park K. D., Sang Y. L., Lee M. C., Macromolecular Research, 2008, 16, 517

    Article  CAS  Google Scholar 

  6. Fan L., Li M., Gong Y., Kai P., Xie W., Journal of Applied Polymer Science, 2012, 125, 829

    Article  CAS  Google Scholar 

  7. Peng Y., Han B., Liu W., Xu X., Carbohydr. Res., 2005, 340, 1846

    Article  CAS  PubMed  Google Scholar 

  8. Shao K., Han B., Dong W., Song F., Liu W., Liu W., Journal of Ocean University of China, 2015, 14, 888

    Article  CAS  Google Scholar 

  9. Luo P., Nie M., Wen H., Xu W., Fan L., Cao Q., International Journal of Biological Macromolecules, 2018, 113, 1024

    Article  CAS  PubMed  Google Scholar 

  10. Lee J. E., Kim S. E., Kwon I. C., Ahn H. J., Cho H., Lee S. H., Kim H. J., Seong S. C., Lee M. C., Artificial Organs, 2015, 28, 829

    Article  Google Scholar 

  11. Joung Y. K., Choi J. H., Park K. M., Park K. D., Biomed. Mater, 2007, 2, 269

    Article  CAS  PubMed  Google Scholar 

  12. Yang C. H., Huang K. S., Grumezescu A. M., Wang C. Y., Tzeng S. C., Chen S. Y., Lin Y. H., Lim Y. S., Electrophoresis, 2014, 35, 316

    Article  CAS  PubMed  Google Scholar 

  13. Lee K. Y., Mooney D. J., Chemical Reviews, 2001, 101, 1869

    Article  CAS  PubMed  Google Scholar 

  14. Tessmar J. K., Achim M. G., Advanced Drug Delivery Reviews, 2007, 59, 274

    Article  CAS  PubMed  Google Scholar 

  15. Loewe C., Cejna M., Schoder M., Thurnher M. M., Lammer J., Thurnher S. A., J. Vasc. Interv. Radiol., 2002, 13, 61

    Article  PubMed  Google Scholar 

  16. Wang E. A., Rosen V., D’Alessandro J. S., Bauduy M., Cordes P., Harada T., Israel D. I., Hewick R. M., Kerns K. M., Lapan P., P. Natl. Acad Sci. USA, 1990, 87, 2220

    Article  CAS  Google Scholar 

  17. Oryan A., Alidadi S., Moshiri A., Bighamsadegh A., Biofactors, 2015, 40, 459

    Article  CAS  Google Scholar 

  18. Saito A., Suzuki Y., Ogata S. I., Ohtsuki C., Tanihara M., Biochim. Biophys. Acta, 2003, 1651, 60

    Article  CAS  PubMed  Google Scholar 

  19. Li J., Hong J., Zheng Q., Guo X., Lan S., Cui F., Pan H., Zou Z., Chen C., Journal of Orthopaedic Research, 2011, 29, 1745

    Article  CAS  PubMed  Google Scholar 

  20. Wang L., Lu S., Lam J., Kasper F. K., Mikos A. G., Tissue Eng. Part C: Methods, 2015, 21, 263

    Article  CAS  Google Scholar 

  21. Karageorgiou V., Kaplan D., Biomaterials, 2005, 26, 5474

    Article  CAS  PubMed  Google Scholar 

  22. Xia P., Wang S., Qi Z., Zhang W., Sun Y., Nanomedicine and Biotechnology, 2019, 47, 1662

    CAS  Google Scholar 

  23. Nonsuwan P., Matsugami A., Hayashi F., Hyon S. H., Matsumura K., Carbohydrate Polymers, 2019, 204, 131

    Article  CAS  PubMed  Google Scholar 

  24. Yu F., Cao X., Du J., Wang G., Chen X., ACS Applied Materials & Interfaces, 2015, 7, 24023

    Article  CAS  Google Scholar 

  25. Frohbergh M. E., Katsman A., Botta G. P., Lazarovici P., Schauer C. L., Wegst U. G. K., Lelkes P. I., Biomaterials, 2012, 33, 9167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jejurikar A., Lawrie G., Martin D., Grøndahl L., Biomedical Materials, 2011, 6, 025010

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y., Liu X., Liu R., Gong Y., Wang M., Huang Q., Feng Q., Yu B., Theranostics, 2017, 7, 1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan H., Zheng Q., Guo X., Wu Y., Wu B., Colloids & Surfaces B, Biointerfaces, 2016, 142, 1

    Article  CAS  PubMed  Google Scholar 

  29. Liu X., Yu B., Huang Q., Liu R., Feng Q., Cai Q., Mi S., International Journal of Biological Macromolecules, 2016, 93, 314

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Zhou.

Additional information

Supported by the Research Fund of the Education Department of Jilin Province, China(No. JJKH20190202KJ), the Research Fund of the Development and Reform Commission of Jilin Province, China(No.2019C051-8), the International Cooperation Projects of the Science and Technology Department of Jilin Province, China(No.2018KJT084) and the Health and Family Planning Research Subject of Jilin Province, China(No. 2016Q019).

Supplementary Data

CCDC 1816536 contains the supplementary crystallo-graphic data for the compound 1. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax:(+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

Electronic Supplementary Material

40242_2019_9177_MOESM1_ESM.pdf

A Polysaccharide-based Hydrogel and PLGA Microspheres for Sustained P24 Peptide Delivery: An In vitro and In vivo Study Based on Osteogenic Capability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Q., Qiao, C., Ning, J. et al. A Polysaccharide-based Hydrogel and PLGA Microspheres for Sustained P24 Peptide Delivery: An In vitro and In vivo Study Based on Osteogenic Capability. Chem. Res. Chin. Univ. 35, 908–915 (2019). https://doi.org/10.1007/s40242-019-9177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-9177-3

Keywords

Navigation