Skip to main content
Log in

Opening of Band Gap of Graphene with High Electronic Mobility by Codoping BN Pairs

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Two-dimensional(2D) materials with a high density and low power consumption have become the most popular candidates for next-generation semiconductor electronic devices. As a prototype 2D material, graphene has attracted much attention owing to its stability and ultrahigh mobility. However, zero band gap of graphene leads to very low on-off ratios and thus limits its applications in electronic devices, such as transistors. Although some new 2D materials and doped graphene have nonzero band gaps, the electronic mobility is sacrificed. In this study, to open the band gap of graphene with high electronic mobility, the structure and property of BN-doped graphene were evaluated using first-principles calculations. The formation energies indicate that the six-membered BN rings doped graphene has the most favorable configuration. The band structures show that the band gaps can be opened by such type of doping. Also, the Dirac-cone-like band dispersion of graphene is mostly inhibited, ensuring high electronic mobility. Therefore, codoping BN into graphene might provide 2D materials with nonzero band gaps and high electronic mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306(5696), 666

    Article  CAS  PubMed  Google Scholar 

  2. Xu M., Liang T., Shi M., Chen H., Chem. Rev, 2013, 113(5), 3766

    Article  CAS  PubMed  Google Scholar 

  3. Autore M., Li P., Dolado I., Alfaro-Mozaz F. J., Esteban R., Atxabal A., Casanova F., Hueso L. E., Alonso-González P., Aizpurua J., Nikitin A. Y., Vélez S., Hillenbrand R., Light: Sci. Appl., 2018, 7, 17172

    Article  CAS  Google Scholar 

  4. Abate Y., Gamage S., Li Z., Babicheva V., Javani M. H., Wang H., Cronin S. B., Stockman M. I., Light: Sci. Appl., 2016, 5, e16162

    Article  CAS  Google Scholar 

  5. Gan X. T., Zhao C. Y., Hu S. Q., Wang T., Song Y., Li J., Zhao Q. H., Jie W. Q., Zhao J. L., Light: Sci. Appl., 2018, 7(1), 17126

    Article  CAS  Google Scholar 

  6. Wang D., Han D., Li X. B., Chen N. K., West D., Meunier V., Zhang S. B., Sun H. B., Phys. Rev. B, 2017, 96(15), 155424

    Article  Google Scholar 

  7. Yang J., Wang Z., Wang F., Xu R. J., Tao J., Zhang S., Qin Q. H., Luther-Davies B., Jagadish C., Yu Z. F., Lu Y. R., Light: Sci. Appl., 2016, 5, e16046

    Article  CAS  Google Scholar 

  8. Dumcenco D. O., Kobayashi H., Liu Z., Huang Y. S., Suenaga K., Nat. Commun., 2013, 4, 1351

    Article  PubMed  CAS  Google Scholar 

  9. Chen W., Zhang S. P., Kang M., Liu W. K., Ou Z. W., Li Y., Zhang Y. X., Guan Z. Q., Xu H. X., Light: Sci. Appl., 2018, 7(1), 56

    Article  CAS  Google Scholar 

  10. Kang J. H., Cao W., Xie X. J., Sarkar D., Liu W., Banerjee K., SPIE, 2014, 908305

  11. Zhu L. X., Liu F. Y., Lin H. T., Hu J. J., Yu Z. F., Wang X. R., Fan S. H., Light: Sci. Appl., 2016, 5, e16052

    Article  CAS  Google Scholar 

  12. Wang D., Li X. B., Han D., Tian W. Q., Sun H. B., Nano Today, 2017, 16, 30

    Article  CAS  Google Scholar 

  13. Wang X. P., Li X. B., Chen N. K., Zhao J. H., Chen Q. D., Sun H. B., Phys. Chem. Chem. Phys., 2018, 20(10), 6945

    Article  CAS  PubMed  Google Scholar 

  14. Wang D., Li X. B., Sun H. B., Nanoscale, 2017, 9(32), 11619

    Article  CAS  PubMed  Google Scholar 

  15. Zheng H., Li X. B., Chen N. A. K., Xie S. Y., Tian W. Q., Chen Y. P., Xia H., Zhang S. B., Sun H. B., Phys. Rev. B, 2015, 92(11), 115307

    Article  CAS  Google Scholar 

  16. Chen J. H., Tan J., Wu G. X., Zhang X. J., Xu F., Lu Y. Q., Light: Sci. Appl., 2019, 8(1), 8

    Article  CAS  Google Scholar 

  17. Kang P., Kim K. H., Park H. G., Nam S., Light: Sci. Appl., 2018, 7(1), 17

    Article  CAS  Google Scholar 

  18. Zhu Y. B., Li Z. Y., Hao Z., Dimarco C., Maturavongsadit P., Hao Y. F., Lu M., Stein A., Wang Q., Hone J., Yu N. F., Lin Q., Light: Sci. Appl., 2018, 7(1), 67

    Article  CAS  Google Scholar 

  19. Lee W. H., Park J., Sim S. H., Jo S. B., Kim K. S., Hong B. H., Cho K., Adv. Mater., 2011, 23(15), 1752

    Article  CAS  PubMed  Google Scholar 

  20. Bae S., Kim H., Lee Y., Xu X. F., Park J. S., Zheng Y., Balakrishnan J., Lei T., Kim H. R., Song Y. I., Kim Y. J., Kim K. S., Ozyilmaz B., Ahn J. H., Hong B. H., Iijima S., Nat. Nanotechnol, 2010, 5(8), 574

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigo D., Tittl A., Limaj O., Abajo F. J. G. D., Pruneri V., Altug H., Light: Sci. Appl., 2017, 6, e16277

    Article  CAS  Google Scholar 

  22. Zhai F., Feng Y., Zhou K., Wang L., Zheng Z., Feng W., J. Mater. Chem. C, 2019, 7(8), 2146

    Article  CAS  Google Scholar 

  23. Li Z., Wang L., Li Y., Feng Y., Feng W., Compos. Sci. Technol, 2019, 179, 10

    Article  CAS  Google Scholar 

  24. Dong L., Feng Y., Wang L., Feng W., Chem. Soc. Rev, 2018, 47(19), 7339

    Article  CAS  PubMed  Google Scholar 

  25. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K., Rev. Mod. Phys., 2009, 81(1), 109

    Article  CAS  Google Scholar 

  26. Zhu Y. W., Murali S., Cai W. W., Li X. S., Suk J. W., Potts J. R., Ruoff R. S., Adv. Mater., 2010, 22(35), 3906

    Article  CAS  PubMed  Google Scholar 

  27. Morales-Narvaez E., Merkoci A., Adv. Mater., 2019, 31(6), 1805043

    Google Scholar 

  28. Xie S. Y., Li X. B., Sun Y. Y., Zhang Y. L., Han D., Tian W. Q., Wang W. Q., Zheng Y. S., Zhang S. B., Sun H. B., Carbon, 2013, 52, 122

    Article  CAS  Google Scholar 

  29. Gao X. F., Wei Z. Q., Meunier V., Sun Y. Y., Zhang S. B. B., Chem. Phys. Lett., 2013, 555, 1

    Article  CAS  Google Scholar 

  30. Wang Y., Shao Y. Y., Matson D. W., Li J. H., Lin Y. H., ACS Nano, 2010, 4(4), 1790

    Article  CAS  PubMed  Google Scholar 

  31. Pan L., Que Y., Chen H., Wang D., Li J., Shen C., Xiao W., Du S., Gao H., Pantelides S. T., Nano Lett., 2015, 15(10), 6464

    Article  CAS  PubMed  Google Scholar 

  32. Kim G., Jang A. R., Jeong H. Y., Lee Z., Kang D. J., Shin H. S., Nano Lett., 2013, 13(4), 1834

    Article  CAS  PubMed  Google Scholar 

  33. Wang L. F., Wu B., Chen J. S., Liu H. T., Hu P. A., Liu Y. Q., Adv. Mater., 2014, 26(10), 1559

    Article  CAS  PubMed  Google Scholar 

  34. Ci L., Song L., Jin C., Jariwala D., Wu D., Li Y., Srivastava A., Wang Z. F., Storr K., Balicas L., Nat. Mater., 2010, 9, 430

    Article  CAS  PubMed  Google Scholar 

  35. Wang H., Zhao C., Liu L., Xu Z., Wei J., Wang W., Bai X., Wang E., Nano Research, 2016, 9(5), 1221

    Article  CAS  Google Scholar 

  36. Uddin M. R., Majety S., Li J., Lin J. Y., Jiang H. X., J. Appl. Phys., 2014, 115(9), 093509

    Article  CAS  Google Scholar 

  37. Zhang M., Gao G., Kutana A., Wang Y., Zou X., Tse J. S., Yakobson B. I., Li H., Liu H., Ma Y., Nanoscale, 2015, 7(28), 12023

    Article  CAS  PubMed  Google Scholar 

  38. Guilhon I., Marques M., Teles L. K., Bechstedt F., Phys. Rev. B, 2017, 95(3), 035407

    Article  Google Scholar 

  39. Ren X. Y., Xia S., Li X. B., Chen N. K., Wang X. P., Wang D., Chen Z. G., Zhang S., Sun H. B., Phys. Chem. Chem. Phys., 2018, 20(35), 23106

    Article  CAS  PubMed  Google Scholar 

  40. Hohenberg P., Kohn W., Phys. Rev., 1964, 136(3B), B864

    Article  Google Scholar 

  41. Kohn W., Sham L. J., Phys. Rev., 1965, 140(4A), A1133

    Article  Google Scholar 

  42. Kresse G., Furthmüller J., Phys. Rev. B, 1996, 54(16), 11169

    Article  CAS  Google Scholar 

  43. Blöchl P. E., Phys. Rev. B, 1994, 50(24), 17953

    Article  Google Scholar 

  44. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77(18), 3865

    Article  CAS  PubMed  Google Scholar 

  45. Krivanek O. L., Chisholm M. F., Nicolosi V., Pennycook T. J., Corbin G. J., Dellby N., Murfitt M. F., Own C. S., Szilagyi Z. S., Oxley M. P., Pantelides S. T., Pennycook S. J., Nature, 2010, 464(7288), 571

    Article  CAS  PubMed  Google Scholar 

  46. Chen N. K., Li X. B., Bang J., Wang X. P., Han D., West D., Zhang S. B., Sun H. B., Phys. Rev. Lett., 2018, 120(18), 185701

    Article  CAS  PubMed  Google Scholar 

  47. Chen N. K., Li X. B., Wang X. P., Tian W. Q., Zhang S. B., Sun H. B., Acta Mater., 2018, 143, 102

    Article  CAS  Google Scholar 

  48. Li X. B., Liu X. Q., Han X. D., Zhang S. B., Phys. Status Solidi B, 2012, 249(10), 1861

    Article  CAS  Google Scholar 

  49. Li X. B., Chen N. K., Wang X. P., Sun H. B., Adv. Funct. Mater., 2018, 28(44), 1803380

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiwu Li or Han Yang.

Additional information

Supported by the National Key Research and Development Program of China(No.2017YFB1104300), the National Natural Science Foundation of China(No.11874171) and the Fund of the High-performance Computing Center(HPCC) of Jilin University, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Xia, S., Zhang, Z. et al. Opening of Band Gap of Graphene with High Electronic Mobility by Codoping BN Pairs. Chem. Res. Chin. Univ. 35, 1058–1061 (2019). https://doi.org/10.1007/s40242-019-9151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-9151-0

Keywords

Navigation