Skip to main content
Log in

Experimental Investigations on Basalt Fibre-Reinforced Concrete

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

Fibres are used in concrete to improve its structural integrity. Nowadays, among all basalt fibres, an inert mineral fibre is gaining more importance due to its exceptional properties, which include resistance to corrosion and low thermal conductivity. It also improves tensile strength, flexural strength and toughness of concrete. It can be used to extend the life of important concrete structures such as nuclear power plants, highways, bridges and runways. Basalt fibre in concrete is still an exploratory area due to limited studies. Therefore, a systematic study on basalt fibre-reinforced concrete was carried out with percentage volume fraction of fibre 0.50 (13.0 kg/m3), 0.75 (19.5 kg/m3) and 1.00 (26.0 kg/m3). The increase in compressive, splitting tensile and flexural strength is in the order of 26.79, 42.71 and 44.06%, respectively, for 0.50% dosage of basalt fibre as compared to control concrete. In addition, basalt fibre is found to be amorphous and hydrophilic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M.E. Arslan, Effects of basalt and glass chopped fibres addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Constr. Build. Mater. 114, 383–391 (2016)

    Article  Google Scholar 

  2. C. Jiang, K. Fan, F. Wu, D. Chen, Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 58, 187–193 (2014)

    Article  Google Scholar 

  3. J. Branston, S. Das, S.Y. Kenno, C. Taylor, Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 124, 878–886 (2016)

    Article  Google Scholar 

  4. S. Mindness, in Proceedings of the International Conference Sustainable Construction Materials and Technologies. Thirty years of fibre reinforced concrete research at the University of British Columbia (Columbia, 2007), pp. 259–268

  5. S.K. Singh, S.K. Kirthika, S.R. Karade, U. Verma. Basalt fibre: a potential construction material. Emerging Building Materials and Construction Technologies conducted by: BMTPC, New Delhi on March 21 and 22 (2016), pp. 185–194

  6. S.K. Kirthika, Behaviour of hybrid fibre reinforced concrete at elevated temperature. M. Tech. thesis submitted to AcSIR. CSIR-CBRI, Roorkee (2016), pp. 1–132

  7. P.V. Kumbhar, An overview: basalt rock fibres-new construction material. Acta Eng. Int. 2(1), 11–18 (2014)

    Google Scholar 

  8. V. Dhand, G. Mittal, K.Y. Rhee, S.J. Park, D. Hui, A short review on basalt fibre reinforced polymer composites. Compos. B 73, 166–180 (2015)

    Article  Google Scholar 

  9. V. Fiore, T. Scalici, G. Di Bella, A. Valenza, A review on basalt fibre and its composites. Compos. B 74, 74–94 (2015)

    Article  Google Scholar 

  10. T. Ayub, N. Shafiq, M. Nuruddin, Effect of chopped basalt fibres on the mechanical properties and microstructure of high performance fibre reinforced concrete. Adv. Mater. Sci. Eng. 2014, 1–15 (2014)

    Article  Google Scholar 

  11. S.K. Kirthika, S.K. Singh, M. Surya, Durability studies on basalt fiber reinforced concrete. Indian Concr. J. (ICJ) 92(4), 45–55 (2018)

    Google Scholar 

  12. V. B. Brik, Advanced concept concrete using basalt fibre composite reinforcement. Tech Res Report submitted to NCHRP-IDEA, Project 25 (1999), pp. 1–5

  13. C. High, H.M. Eliem, A.E. Safty, Use of basalt fibres for concrete structures. Constr. Build. Mater. 96, 37–46 (2015)

    Article  Google Scholar 

  14. J. Sim, C. Park, D.Y. Moon, Characteristics of basalt fibre as a strengthening material for concrete structures. Compos. B Eng. 36(6–7), 504–512 (2005)

    Article  Google Scholar 

  15. B. Wei, H. Cao, S. Song, Environmental resistance and mechanical performance of basalt and glass fibres. Mater. Sci. Eng. 527, 4708–4715 (2010)

    Article  Google Scholar 

  16. C. Scheffler, T. Forester, E. Mader, G. Heinrich, S. Hempel, V. Mechtecherin, Aging of alkali-resistant glass and basalt fibres in alkaline solutions: evaluation of the failure stress by Weibull distribution function. J. Non Cryst. Solids 355(52–54), 2588–2595 (2009)

    Article  Google Scholar 

  17. G. Wu, X. Wang, Z. Wu, Z. Dong, G. Zhang, Durability of basalt fibres and composites in corrosive environments. J. Compos. Mater. 49(7), 873–887 (2014)

    Article  Google Scholar 

  18. S.K. Kirthika, S.K. Singh, M. Surya, Durability studies of basalt fibre reinforced concrete. Indian Concr. J. 92(4), 45–55 (2018)

    Google Scholar 

  19. B.E. Ramachandran, V. Velpari, N. Balasubramanian, Chemical durability studies on basalt fibres. J. Mater. Sci. 16(12), 3393–3397 (1981)

    Article  Google Scholar 

  20. F. Pucci, J.P. Loitier, S. Drapier, Tensiometric method to reliably assess wetting properties of single fibres with resins: validation on cellulosic reinforcements for composites. Colloids Surf. A 512(2017), 26–33 (2016)

    Google Scholar 

  21. G.P. Jaysing, D.A. Joshi, Performance of basalt fibre in concrete. Int. J. Sci. Res. (IJSR) 3(5), 1372–1373 (2014)

    Google Scholar 

  22. M. Tumadhir, Thermal and mechanical properties of basalt fibre reinforced concrete. World Acad. Sci. Eng. Technol. 7(4), 334–337 (2013)

    Google Scholar 

  23. C. Jiang, K. Fan, F. Wu, D. Chen, Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 58, 187–193 (2014)

    Article  Google Scholar 

  24. A.B. Kizilkanat, N. Kabay, V. Akyuncu, S. Chowdhury, A.H. Akca, Mechanical properties and fracture behavior of basalt and glass fibre reinforced concrete: an experimental study. Constr. Build. Mater. 100, 218–224 (2015)

    Article  Google Scholar 

  25. D.P. Dias, C. Thaumaturgo, Fracture toughness of geo-polymeric concrete reinforced with basalt fibres. Cement Concr. Compos. 27(1), 49–54 (2005)

    Article  Google Scholar 

  26. J.F. Dong, Q.Y. Wang, Z.W. Guan, Material properties of basalt fibre reinforced concrete made with recycled earthquake waste. Constr. Build. Mater. 130, 241–251 (2017)

    Article  Google Scholar 

  27. P. Jahi, Investigation of the Addition of Basalt Fibres into Cement. Master’s thesis and specialist projects. Western Kentucky University, Kentucky (2014), pp. 1–55

  28. S.K. Kirthika, Behaviour of hybrid fibre reinforced concrete at elevated temperature. M. Tech. thesis submitted to AcSIR. CSIR-CBRI, Roorkee (2016), pp. 1–132

  29. H.F.W. Taylor, Cement Chemistry, 2nd edn. (Academic Press, London, 1997), pp. 377–408

    Book  Google Scholar 

  30. M.M. Dalbehera, Performance of fibre reinforced concrete at elevated temperature. M. Tech. thesis submitted to AcSIR. CSIR-CBRI, Roorkee (2011), pp. 1–100

  31. D. Matykiewicz, K. Lewandowski, B. Dudziec, Evaluation of thermo-mechanical properties of epoxy–basalt fibre composites modified with zeolite and silsesquioxane. Compos. Interfaces 24(5), 489–498 (2015)

    Article  Google Scholar 

  32. H. Athar, Development of load bearing translucent panels. M. Tech. thesis submitted to AcSIR. CSIR-CBRI, Roorkee (2015), pp. 1–100

  33. Y. Li, J. Wang, Y. Yang, H. Hamada, Y. Qiu, in Surface modifications on basalt fibres. 19th International Conference on Composite Materials and Surface Modifications Part A, Bangkok, vol. 306, (2017), pp. 1–8

  34. K.V. Velde, P. Kickens, Wetting and surface analysis of glass fibres. Indian J. Fibres Text. Res. 25, 8–13 (2000)

    Google Scholar 

  35. IS: 10262, Concrete mix proportioning-guidelines. Bureau of Indian Standards, New Delhi, India (2009)

  36. IS: 269, 43 Grade Ordinary Portland cement: specifications. Bureau of Indian Standards, New Delhi, India (2015)

  37. IS: 383, Specification for coarse and fine aggregates from natural sources for concrete. Bureau of Indian Standards, New Delhi, India (2016)

  38. IS: 9103, Concrete admixtures-specifications. Bureau of Indian Standards, New Delhi, India (1999)

  39. ACI Committee 544, 3R. Guide for specifying, proportioning, mixing, placing, and finishing steel fibre reinforced concrete. Reported by ACI Committee 544 (1998)

  40. IS: 1199, Methods of sampling and analysis of concrete. Bureau of Indian Standards, New Delhi, India (1999)

  41. IS: 516, Methods of tests for strength of concrete. Bureau of Indian Standards, New Delhi, India (1959)

  42. S. Iqbal, A. Ali, K. Holschemacher, T.A. Bier, Effect of change in micro steel fiber content on properties of high strength steel fiber reinforced lightweight self-compacting concrete. Procedia 122, 88–94 (2015)

    Article  Google Scholar 

  43. Y. Barabanshchikov, I. Gutskalov, Strength and deformability of fiber reinforced cement paste on the basis of basalt fiber. Adv. Civ. Eng. 17, 1–5 (2016)

    Google Scholar 

  44. M. Ahmed, J. Mallick, M.A. Hasan, A study of factors affecting the flexural tensile strength of concrete. J. King Saud Univ. Eng. Sci. 28(2016), 147–156 (2014)

    Google Scholar 

  45. N. Anolgu, Z.C. Girgin, E. Anolgu, Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion. ACI Mater. J. 103, 18–24 (2006)

    Google Scholar 

  46. IS: 456, Plain and reinforce concrete. Bureau of Indian Standards, New Delhi, India (2000)

  47. ACI: 318, Building code requirements for reinforced concrete. American Concrete Institute (2014)

  48. EN 12390, Testing hardened concrete. British Standards (2013)

  49. EC-02, Design of concrete structures. EN1992-1-1, European Committee for Standardization (2004)

  50. V. Bindiganavile, N. Banthia, B. Aarup, Impact response of ultra-high-strength fibre-reinforced cement composite. ACI Mater. J. 99(6), 543–548 (2002)

    Google Scholar 

  51. S. Mindess, L. Zhang, Impact resistance of fibre-reinforced concrete. Proc. Inst. Civ. Eng. Struct. Build. 162(1), 69–76 (2009)

    Article  Google Scholar 

  52. N. Banthia, V. Bindiganavile, S. Mindess. June, in Proceedings on 4th International RILEM Workshop on High Performance Fibre Reinforced Cement Composites, ed. by A.E. Naaman, H.W. Reinhardt. Impact resistance of fibre reinforced concrete: a progress report (2003), pp. 117–131

  53. ACI: 544.2R, Measurement of properties of fibre reinforced concrete. ACI Committee Reports, Guides, Standard Practices, and Commentaries (1999)

  54. S. Diamond, The microstructure of cement paste and concrete: a visual primer. Cem. Concr. Compos. 26, 919–933 (2004)

    Article  Google Scholar 

  55. P.K. Mehta, J.M.P. Monteiro, Concrete: Microstructure, Properties, and Materials, 4th edn. (McGraw-Hill Education, New York, 2014), pp. 26–47

    Google Scholar 

Download references

Acknowledgements

The paper forms part of research and development programme at CSIR-Central Building Research Institute, Roorkee, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirthika, S.K., Singh, S.K. Experimental Investigations on Basalt Fibre-Reinforced Concrete. J. Inst. Eng. India Ser. A 99, 661–670 (2018). https://doi.org/10.1007/s40030-018-0325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-018-0325-4

Keywords

Navigation