Skip to main content
Log in

Red pigment production by Monascus purpureus using sweet potato-based medium in submerged fermentation

  • Original Research
  • Published:
Nutrafoods

Abstract

Monascus pigments have potential application as natural colorants in food industries. Sweet potato-based medium was optimised by statistical methods for maximised production of water-soluble red pigment from Monascus purpureus. Significant medium components (sweet potato, K2HPO4 and MgSO4·7H2O) were identified by employing a Plackett-Burman screening experiment for pigment and biomass production. A five-level central composite design of the response surface method was applied to evaluate the optimal concentration and the interaction effects between the selected components. Maximum pigment absorbance of 4.488 (ODU/ml) was predicted at the optimum level of sweet potato, 3.341%, K2HPO4, 0.082% and MgSO4·7H2O, 0.033%. Model verification was performed at the predicted optimal level and the model was well fitted with the experimental results. The results of this study showed that sweet potato can be utilised as a low-cost substrate for red pigment production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nigam PS, Pandey A (2009) Biotechnology for agro-industrial residues utilization: utilization of agro-residues. Springer, the Netherlands

    Book  Google Scholar 

  2. Bridgers EN, Chinn MS, Truong V-D (2010) Extraction of anthocyanins from industrial purple-fleshed sweet potatoes and enzymatic hydrolysis of residues for fermentable sugars. Ind Crop Prod 32:613–620

    Article  CAS  Google Scholar 

  3. Woolfe JA (1992) Sweet potato: an untapped food resource. Cambridge University Press, United Kingdom

    Google Scholar 

  4. Bovell-Benjamin AC (2007) Sweet potato: a review of its past, present, and future role in human nutrition. Adv Food Nutr Res 52:1–59

    Article  CAS  Google Scholar 

  5. Yu B, Zhang F, Zheng Y, Wang P (1996) Alcohol fermentation from the mash of dried sweet potato with its dregs using immobilised yeast. Process Biochem 31:1–6

    Article  CAS  Google Scholar 

  6. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079

    Article  CAS  Google Scholar 

  7. Mukherjee G, Singh SK (2011) Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem 46:188–192

    Article  CAS  Google Scholar 

  8. Jûzlová P, Martinková L., Kren V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170

    Article  Google Scholar 

  9. Fabre CE, Santerre AL, Loret MD, Baberian R, Parailleux A, Goma G, Blanc PJ (1993) Production and food application of the red pigments of Monascus ruber. J Food Sci 58:1099–1103

    Article  CAS  Google Scholar 

  10. Lin TF, Demain AL (1992) Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. J Ind Microbiol 9:173–179

    Article  CAS  Google Scholar 

  11. Lin YL, Wang TH, Lee MH, Su NW (2008) Biologically active components and nutraceuticals in the Monascus fermented rice: a review. Appl Microbiol Biotechnol 77:965–973

    Article  CAS  Google Scholar 

  12. Hsu W-H, Pan T-M (2012) Monascus purpureus — fermented products and oral cancer: a review. Appl Microbiol Biotechnol 93:1831–1842

    Article  CAS  Google Scholar 

  13. Dominguez-Espinosa RM, Webb C (2003) Submerged fermentation in wheat substrates for production of Monascus pigments. World J Microbiol Biotechnol 19:329–336

    Article  CAS  Google Scholar 

  14. Sharmila G, Nidhi B, Muthukumaran C (2013) Sequential statistical optimization of red pigment production by Monascus purpureus (MTCC 369) using potato powder. Ind Crop Prod 44:158–164

    Article  CAS  Google Scholar 

  15. Silveira ST, Daroit DJ, Sant’Anna V, Brandelli A (2013) Stability modeling of red pigments produced by Monascus purpureus in submerged cultivations with sugarcane bagasse. Food Bioprocess Technol 6:1007–1014

    Article  CAS  Google Scholar 

  16. Zhou Z, Yin Z, Hu X (2014) Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation. Biotechnol Appl Biochem 61:716–723

    Article  CAS  Google Scholar 

  17. Silveira ST, Daroit DJ, Brandelli A (2008) Pigment production by Monascus purpureus in grape waste using factorial design. LWT: Food Sci Technol 41:170–174

    Article  CAS  Google Scholar 

  18. Babitha S, Soccol CR, Pandey A (2006) Jackfruit seed: a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol Biotechnol 44:465–471

    CAS  Google Scholar 

  19. Kongruang S (2011) Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor. J Ind Microbiol Biotechnol 38:93–99

    Article  CAS  Google Scholar 

  20. Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435

    Article  CAS  Google Scholar 

  21. Kapoor R, Panda BP (2013) Bioprospecting of soybean for production of nattokinase. Nutrafoods 12:89–95

    Article  CAS  Google Scholar 

  22. Baskar G, Renganathan S (2012) Optimization of L-asparaginase production by Aspergillus terreus MTCC 1782 using response surface methodology and artificial neural network linked genetic algorithm. Asia Pac J Chem Eng 7:212–220

    Article  CAS  Google Scholar 

  23. Agarabi CD, Schiel JE, Lute SC, Chavez BK, Boyne MT, Brorson KA, Khan MA, Read EK (2015) Bioreactor process parameter screening utilizing a Plackett-Burman design for a model monoclonal antibody. J Pharm Sci 104:1919–1928

    Article  CAS  Google Scholar 

  24. Abeer AAEA, Hala RW, Faten AM (2014) Optimization of inulinase production from low cost substrates using Plackett–Burman and Taguchi methods. Carbohydr Polym 102:261–268

    Article  Google Scholar 

  25. Myers RH, Montgomery DC (1995) Response surface methodology, process and product optimization using design experiments. John Wiley and Sons, New York

    Google Scholar 

  26. Kalaivani M, Rajasekaran A (2014) Improvement of monacolin K/citrinin production ratio in Monascus purpureus using UV mutagenesis. Nutrafoods 13:79–84

    Article  CAS  Google Scholar 

  27. Xynos N, Papaefstathiou G, Gikas E, Argyropoulou A, Aligiannis N, Skaltsounis A-L (2014) Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Separ Purif Technol 122:323–330

    Article  CAS  Google Scholar 

  28. Sun Y, Zhang J, Wu S, Wang S (2014) Statistical optimization for production of chitin deacetylase from Rhodococcus erythropolis HG05. Carbohydr Polym 102:649–652

    Article  CAS  Google Scholar 

  29. Zhang Y-L, Kong L-C, Yin C-P, Jiang D-H, Jiang J-Q, He J, Xiao W-X (2013) Extraction optimization by response surface methodology, purification and principal antioxidant metabolites of red pigments extracted from bayberry (Myrica rubra) pomace. LWT: Food Sci Technol 51:343–347

    Article  CAS  Google Scholar 

  30. Tseng YY, Chen MT, Lin CF (2000) Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrite, polyphosphate and various sugars. J Appl Microbiol 88:31–37

    Article  CAS  Google Scholar 

  31. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  Google Scholar 

  32. Stowe RA, Mayer RP (1966) Efficient screening of process variables. Ind Eng Chem 58:36–40

    Article  CAS  Google Scholar 

  33. Weinberg ED (1989) Roles of micronutrients in secondary metabolism of Actinomycetes. In: Shapiro S (ed) Regulation of secondary metabolism in actinomycetes. CRC Press, USA, pp 239–261

    Google Scholar 

  34. Haaland PD (1989) Experimental design in biotechnology. Dekker, New York

    Google Scholar 

  35. Bas D, Boyaci IH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845

    Article  CAS  Google Scholar 

  36. Yu L, Lei T, Rena X, Pei X, Feng Y (2008) Response surface optimization of L-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochem Eng J 39:496–502

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukumaran Chandrasekaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastav, P., Yadav, V.K., Govindasamy, S. et al. Red pigment production by Monascus purpureus using sweet potato-based medium in submerged fermentation. Nutrafoods 14, 159–167 (2015). https://doi.org/10.1007/s13749-015-0032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13749-015-0032-y

Keywords

Navigation