Skip to main content
Log in

Monitoring hémodynamique non invasif chez l’enfant

Non-invasive hemodynamic assessment in critically ill children

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

La défaillance circulatoire de l’enfant est une source de mortalité et de surmorbidité quelle que soit sa cause; elle impose une reconnaissance précoce et la mise en route sans délai d’un traitement standardisé fondé sur des objectifs prédéfinis. Les outils non invasifs de diagnostic et de monitorage du débit cardiaque sont devenus un complément essentiel à la surveillance continue de la pression artérielle sanglante, la technique oscillométrique ayant ses propres limites. L’échocardiographie transthoracique et le doppler oesophagien sont les outils les mieux évalués chez l’enfant, mais ils comportent également des limites et exigent une formation spécifique. Les paramètres statiques de précharge traditionnels (pression, volume et indices échodoppler) sont peu prédictifs de la réponse au remplissage vasculaire, ce qui justifie le recours à des index dynamiques dont certains sont validés chez l’enfant.

Abstract

Circulatory failure is an important cause of pediatric morbidity and mortality and requires early recognition and prompt treatment with adequate protocols. Advanced hemodynamic monitoring consists in the non-invasive measurement of cardiac output and predictive parameters of fluid responsiveness. Here, we discuss the interest of hemodynamic monitoring devices in relation to pediatric physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Truijen J, Lieshout JJ, Wesselink WA, Westerhof BE (2012) Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput 26:267–278

    Article  PubMed  Google Scholar 

  2. Chung E, Cannesson M (2012) Using noninvasive dynamic parameters of fluid responsiveness in children: there is still much to learn. J Clin Monit Comput 26:153–155

    Article  PubMed  Google Scholar 

  3. Marik PE, Monnet X, Teboul JL (2011) Hemodynamic parameters to guide fluid therapy. Ann Intensive Care 1:1–9

    Article  PubMed  Google Scholar 

  4. Bur A, Herkner H, Vlcek M, et al (2003) Factors influencing the accuracy of oscillometric blood pressure measurement in critically ill patients. Crit Care Med 31:793–799

    Article  PubMed  Google Scholar 

  5. Clark JA, Lieh-Lai MW, Sarnaik A, Mattoo TK (2002) Discrepancies between direct and indirect blood pressure measurements using various recommendations for arm cuff selection. Pediatrics 110:920–923

    Article  PubMed  Google Scholar 

  6. Mireles SA, Jaffe RA, Drover DR, Brock-Utne JG (2009) A poor correlation exists between oscillometric and radial arterial blood pressure as measured by the Philips MP90 monitor. J Clin Monit Comput 23:169–174

    Article  PubMed  Google Scholar 

  7. Dannevig I, Dale HC, Liestøl K, Lindemann R (2005) Blood pressure in the neonate: three noninvasive oscillometric pressure monitors compared with invasively measured blood pressure. Acta Paediatr 94:191–196

    Article  PubMed  Google Scholar 

  8. Sivarajan VB, Bohn D (2011) Monitoring of standard hemodynamic parameters: heart rate, systemic blood pressure, atrial pressure, pulse oximetry, and end-tidal CO2. Pediatr Crit Care Med 12):S2–S11

    Article  PubMed  Google Scholar 

  9. Biais M, Stecken L, Ottolenghi L, et al (2011) The ability of pulse pressure variations obtained with CNAPTM device to predict fluid responsiveness in the operating room. Anesth Analg 113:523–528

    PubMed  Google Scholar 

  10. Tran H, Froese N, Dumont G, et al (2006) Variation in blood pressure as a guide to volume loading in children following cardiopulmonary bypass. J Clin Monit Comput 21:1–6

    Article  PubMed  Google Scholar 

  11. Durand P, Chevret L, Essouri S, et al (2008) Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Med 34:888–894

    Article  PubMed  Google Scholar 

  12. Pereira de Souza Neto E, Grousson S, Duflo F, et al (2011) Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography. Br J Anaesth 106:856–864

    Article  PubMed  CAS  Google Scholar 

  13. Sandroni C, Cavallaro F, Marano C, et al (2012) Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and metaanalysis. Intensive Care Med 38:1429–1437

    Article  PubMed  Google Scholar 

  14. Renner J, Broch O, Gruenewald M, et al (2011) Noninvasive prediction of fluid responsiveness in infants using pleth variability index. Anaesthesia 66:582–589

    Article  PubMed  CAS  Google Scholar 

  15. Feldman JM, Sussman E, Singh D, Friedman BJ (2012) Is the pleth variability index a surrogate for pulse pressure variation in a pediatric population undergoing spine fusion? Pediatr Anesth 22:250–255

    Article  Google Scholar 

  16. Chandler JR, Cooke E, Petersen C, et al (2012) Pulse oximeter plethysmograph variation and its relationship to the arterial waveform in mechanically ventilated children. J Clin Monitor Comput 26:145–151

    Article  CAS  Google Scholar 

  17. Monge-García MI, Cano AG, Díaz Monrové JC (2009) Brachial artery peak velocity variation to predict fluid responsiveness in mechanically ventilated patients. Crit Care 13:R142

    Article  PubMed  Google Scholar 

  18. Brennan JM (2007) Radial artery pulse pressure variation correlates with brachial artery peak velocity variation in ventilated subjects when measured by internal medicine residents using hand-carried ultrasound devices. Chest J 131:1301

    Article  Google Scholar 

  19. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monitor Comput 15:85–91

    Article  CAS  Google Scholar 

  20. Antonelli M, Levy M, Andrews PJ, et al (2007) Hemodynamic monitoring in shock and implications for management. Intensive Care Med 33:575–590

    Article  PubMed  Google Scholar 

  21. Dellinger RP, Levy MM, Carlet JM, et al (2007) Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 34:17–60

    Article  PubMed  Google Scholar 

  22. Brierley J, Carcillo JA, Choong K, et al (2009) Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med 37:666–688

    Article  PubMed  Google Scholar 

  23. Tibby SM, Hatherill M, Marsh MJ, Murdoch IA (1997) Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch Dis Child 77:516–518

    Article  PubMed  CAS  Google Scholar 

  24. Egan JR, Festa M, Cole AD, et al (2005) Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med 31:568–573

    Article  PubMed  Google Scholar 

  25. Darmon PL, Hillel Z, Mogtader A, et al (1994) Cardiac output by transesophageal echocardiography using continuous-wave Doppler across the aortic valve. Anesthesiology 80:796–805

    Article  PubMed  CAS  Google Scholar 

  26. Raimer PL, Han YY, Weber MS, et al (2011) A normal capillary refill time of ≤ 2 seconds is associated with superior vena cava oxygen saturations of ≥ 70 %. J Pediatr 158:968–967

    Article  PubMed  Google Scholar 

  27. Tibby SM, Hatherill M, Murdoch IA (1999) Capillary refill and core-peripheral temperature gap as indicators of haemodynamic status in paediatric intensive care patients. Arch Dis Child 80:163–166

    Article  PubMed  CAS  Google Scholar 

  28. Grollmuss O, Demontoux S, Capderou A, et al (2012) Electrical velocimetry as a tool for measuring cardiac output in small infants after heart surgery. Intensive Care Med 38:1032–1039

    Article  PubMed  Google Scholar 

  29. Chew MS, Poelaert J (2003) Accuracy and repeatability of pediatric cardiac output measurement using Doppler: 20-year review of the literature. Intensive Care Med 29:1889–1894

    Article  PubMed  Google Scholar 

  30. Descorps-Declere A, Smail N, Vigue B, et al (1996) Transgastric, pulsed Doppler echocardiographic determination of cardiac output. Intensive Care Med 22:34–38

    Article  PubMed  CAS  Google Scholar 

  31. Axler O, Megarbane B, Lentschener C, Fernandez H (2003) Comparison of cardiac output measured with echocardiographic volumes and aortic Doppler methods during mechanical ventilation. Intensive Care Med 29:208–217

    PubMed  CAS  Google Scholar 

  32. Hudson I, Houston A, Aitchison T, et al (1990) Reproducibility of measurements of cardiac output in newborn infants by Doppler ultrasound. Arch Dis Child 65(1 Spec No):15–19

    Article  PubMed  CAS  Google Scholar 

  33. Murdoch IA, Marsh MJ, Tibby SM, McLuckie A (1995) Continuous haemodynamic monitoring in children: use of transoesophageal Doppler. Acta Paediatr 84:761–764

    Article  PubMed  CAS  Google Scholar 

  34. Choi DY, Kwak HJ, Park HY, et al (2010) Respiratory variation in aortic blood flow velocity as a predictor of fluid responsiveness in children after repair of ventricular septal defect. Pediatr Cardiol 31:1166–1170

    Article  PubMed  Google Scholar 

  35. Lukito V, Djer MM, Pudjiadi AH, Munasir Z (2012) The role of passive leg raising to predict fluid responsiveness in pediatric intensive care unit patients. Pediatr Crit Care Med 13:e155–e160

    Article  PubMed  Google Scholar 

  36. Ferragu F, Milesi C, Combes C, et al (2011) Prédiction de l’efficacité du remplissage vasculaire chez l’enfant en réanimation pédiatrique. Ann Fr Anesth Reanim 30:698

    Article  PubMed  CAS  Google Scholar 

  37. Raux O, Spencer A, Fesseau R, et al (2011) Intraoperative use of transoesophageal Doppler to predict response to volume expansion in infants and neonates. Br J Anaesth 108:100–107

    Article  PubMed  Google Scholar 

  38. Slama M, Masson H, Teboul JL, et al (2002) Respiratory variations of aortic VTI: a new index of hypovolemia and fluid responsiveness. Am J Physiol Heart Circ Physiol 283:H1729–H1733

    PubMed  CAS  Google Scholar 

  39. Salim MA, DiSessa TG, Arheart KL, Alpert BS (1995) Contribution of superior vena caval flow to total cardiac output in children a Doppler Echocardiographic Study. Circulation 92:1860–1865

    Article  PubMed  CAS  Google Scholar 

  40. Tibby SM, Hatherill M, Murdoch IA (2000) Use of transesophageal Doppler ultrasonography in ventilated pediatric patients: derivation of cardiac output. Crit Care Med 28:2045

    Article  PubMed  CAS  Google Scholar 

  41. Tibby SM, Hatherill M, Durward A, Murdoch IA (2001) Are transoesophageal Doppler parameters a reliable guide to paediatric haemodynamic status and fluid management? Intensive Care Med 27:201–205

    Article  PubMed  CAS  Google Scholar 

  42. Singer M, Bennett D (1989) Optimisation of positive and expiratory pressure for maximal delivery of oxygen to tissues using oesophageal Doppler ultrasonography. BMJ 298:1350–1353

    Article  PubMed  CAS  Google Scholar 

  43. Cariou A, Monchi M, Joly LM, et al (1998) Noninvasive cardiac output monitoring by aortic blood flow determination: evaluation of the Sometec Dynemo-3000 system. Crit Care Med 26:2066–2072

    Article  PubMed  CAS  Google Scholar 

  44. Valtier B, Cholley BP, Belot JP, et al (1998) Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med 158:77–83

    PubMed  CAS  Google Scholar 

  45. Abbas SM, Hill AG (2007) Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia 63:44–51

    Article  Google Scholar 

  46. Schmitz L, Xanthopoulos A, Koch H, Lange PE (2004) Doppler flow parameters of left ventricular filling in infants: how long does it take for the maturation of the diastolic function in a normal left ventricle to occur? Pediatr Cardiol 25:482–491

    Article  PubMed  CAS  Google Scholar 

  47. Orliaguet GA, Meyer PG, Blanot S, et al (1998) Noninvasive aortic blood flow measurement in infants during repair of craniosynostosis. Br J Anaesth 87:537–542

    CAS  Google Scholar 

  48. Monsel A, Salvat-Toussaint A, Durand P, et al (2007) The transesophageal Doppler and hemodynamic effects of epidural anesthesia in infants anesthetized with sevoflurane and sufentanil. Anesthes Analg 105:46–50

    Article  CAS  Google Scholar 

  49. Slama M, Masson H, Teboul JL, et al (2004) Monitoring of respiratory variations of aortic blood flow velocity using esophageal Doppler. Intensive Care Med 30:1182–1187

    Article  PubMed  Google Scholar 

  50. Knirsch W, Kretschmar O, Tomaske M, et al (2008) Cardiac output measurement in children: comparison of the ultrasound cardiac output monitor with thermodilution cardiac output measurement. Intensive Care Med 34:1060–1064

    Article  PubMed  Google Scholar 

  51. Nguyen HB, Banta DP, Stewart G, et al (2010) Cardiac index measurements by transcutaneous Doppler ultrasound and transthoracic echocardiography in adult and pediatric emergency patients. J Clin Monitor Comput 24:237–247

    Article  Google Scholar 

  52. Brierley J, Peters MJ (2008) Distinct hemodynamic patterns of septic shock at presentation to pediatric intensive care. Pediatrics 122:752–759

    Article  PubMed  Google Scholar 

  53. Norozi K, Beck C, Osthaus WA, et al (2008) Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br J Anaesth 100:88–94

    Article  PubMed  CAS  Google Scholar 

  54. Schmidt C (2005) Comparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output. Br J Anaesth 95:603–610

    Article  PubMed  CAS  Google Scholar 

  55. Botte A, Leclerc F, Riou Y, et al (2006) Evaluation of a noninvasive cardiac output monitor in mechanically ventilated children. Pediatr Crit Care Med 7:231–236

    Article  PubMed  Google Scholar 

  56. Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30:1834–1837

    Article  PubMed  Google Scholar 

  57. Kircher BJ, Himelman RB, Schiller NB (1990) Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol 66:493–496

    Article  PubMed  CAS  Google Scholar 

  58. Iwamoto Y, Tamai A, Kohno K, et al (2011) Usefulness of respiratory variation of inferior vena cava diameter for estimation of elevated central venous pressure in children with cardiovascular disease. Circ J 75:1209–1214

    Article  PubMed  Google Scholar 

  59. Swaminathan S, Ferrer PL, Wolff GS, et al (2003) Usefulness of tissue Doppler echocardiography for evaluating ventricular function in children without heart disease. Am J Cardiol 91: 570–574

    Article  PubMed  Google Scholar 

  60. Larrazet F, Bouabdallah K, Le Bret E, et al (2005) Tissue Doppler echocardiographic and color M-mode estimation of left atrial pressure in infants. Pediatric Crit Care Med 6:448–453

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Durand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, P., Bailly Salin, J. & Roulleau, P. Monitoring hémodynamique non invasif chez l’enfant. Réanimation 22, 164–172 (2013). https://doi.org/10.1007/s13546-013-0656-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-013-0656-4

Mots clés

Keywords

Navigation