Skip to main content
Log in

Experimental and Ab Initio Investigation of the Physical Properties of PbS Thin Films Prepared by Chemical Bath Deposition (CBD)

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, high-quality PbS thin films were prepared by the chemical bath deposition (CBD) method for different molarities of sulfur precursors (1 M to 1.4 M) in a basic solution. The composition, morphology, and structural and optical properties of the PbS thin films were studied by means of scanning electron microscopy (SEM–EDS), X-ray diffraction (XRD), and UV–visible spectrophotometry (UV–Vis). The spectra obtained by XRD show that the PbS thin films crystallize in a NaCl structure with the grating parameter (a = 5.9202 Å) and the (002) plane is a preferential orientation of the films. The optical band gap decreases from 1.5 to 1.23 eV as the grain size of the PbS thin films increases from 15 to 37 nm. The decrease in the band gap is due to quantum confinement effects promoted by the small Bohr radius of this material (18 nm). Our experimental results have been validated by theoretical calculations in the framework of the functional density theory (FDT) using the full potential linearized augmented plane wave (FP-LAPW) as implemented in the WIEN2K code. The value of the optical band gap found in PbS nanoparticles is suitable for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Hussein, A. Yazdani, Results in Physics 12, 1586–1595 (2019)

    Article  ADS  Google Scholar 

  2. I.E. Morales-Fernandez, M.I. Medina-Montes, L.A. Gonzalez, B. Gnade, M.A. Quevedo-Lopez, R. Ramirez-Bona, Electrical behaviour of p-type PbS-based metal-oxide-semiconductor thin film transistors. Thin Solid Films 519, 512–516 (2010)

    Article  ADS  Google Scholar 

  3. A. Elhat, I. Chaki, R. Essajai, A. Mzerd, G. Schmerber, M. Regragui, A. Belayachi, Z. Sekkat, A. Dinia, A. Slaoui, M. Abd-Lefdil Growth and characterization of (Tb, Yb) Co-doping sprayed ZnO thin films. Crystals 10, 169 (2020). https://doi.org/10.3390/cryst10030169

  4. R. Essajai, A. El Hat, H. Shaili, W. E.M. Salmani, N. Hassanain, A. Mzerd, Structural, optical and electrical properties of SnxSy thin films deposited by spray pyrolysis technique Mater. Res. Innovations 25, 1–7 (2021). https://doi.org/10.1080/14328917.2020.1723981

  5. B. Mohanty, A. Chattopadhyay, J. Nayak, J. Alloy. Compd. 850, 1567352 (2021)

    Article  Google Scholar 

  6. R.K. Joshi, A. Kanjilal, H.K. Sehgal, Appl. Surf. Sci. 221, 43 (2004)

    Article  ADS  Google Scholar 

  7. A.S. Obaid, Z. Hassan, M.A. Mahdi, M. Bououdina, Fabrication and characterisation of n-CdS/p-PbS heterojunction solar cells using microwave-assisted chemical bath deposition. Sol. Energy 89, 143–151 (2013)

    Article  ADS  Google Scholar 

  8. S. Gunes, K.P. Fritz, H. Neugebauer, N.S. Sariciftci, S. Kumar, G.D. Scholes, Hybrid solar cells using PbS nanoparticles. Sol. Energy Mater. Sol. Cells 91, 420–423 (2007)

    Article  Google Scholar 

  9. A.G.U. Perera, P.V.V. Jayaweera, G. Ariyawansa, S.G. Matsik, K. Tennakone, M. Buchanan, H.C. Liu, X.H. Su, P. Bhattacharya, Microelectron. J. 40, 507 (2009)

    Article  Google Scholar 

  10. K.N.C. Kumar, S.K.K. Pasha, G.S. Muhammad, K. Chidambaram, K. Deshmukh, Influence of nickel on the structural, optical and magnetic properties of PbS thin films synthesised by successive ionic layer adsorption and reaction (SILAR) method. Mater. Lett. 164, 108–110 (2016)

    Article  Google Scholar 

  11. K.C. Preetha, K.V. Murali, A.J. Regina, K. Deepa, T.L. Remadevi, Effect of cationic precursor pH on optical and transport properties of SILAR deposited nanocrystalline PbS thin films. Curr. Appl. Phys. 12, 53–59 (2012)

    Article  ADS  Google Scholar 

  12. M. Sharon, K.S. Ramaiah, M. Kumar, M. Neumann-Spallart, C. Levy-Clement, Electrodeposition of lead sulphide in acidic medium. J. Electro-anal. Chem. 661, 265–269 (2011)

    Article  Google Scholar 

  13. S. Ravishankar, A.R. Balu, M. Anbarasi, V.S. Nagarethinam, Influence of precursor molar concentration on the structural, morphological, optical and electrical properties of PbS thin films deposited by spray pyrolysis technique using perfume atomiser. Optik 126, 2550–2555 (2015)

    Article  ADS  Google Scholar 

  14. J. Hernández-Borja, Y.V. Vorobiev, R. Ramírez-Bon, Sol. Energy Mater. Sol. C. 95, 1882 (2011)

    Article  Google Scholar 

  15. D. Kumar, G. Agarwal, B. Tripathi, D. Vyas, V. Kulshrestha, Characterization of PbS nanoparticles synthesised by chemical bath deposition. J. Alloys Comp. 484, 463–466 (2009)

    Article  Google Scholar 

  16. M.M. Abbas, A. Ab-M. Shehab, N. -A. Hassan, A.-K. Al-Samuraee,Thin Solid Films 519, 4917 (2011)

    Article  ADS  Google Scholar 

  17. J.A. Amusan, G.R. Fajinmi, Y.K. Sanusi, Res. J. Appl. Sci. 2, 931 (2007)

    Google Scholar 

  18. A.N. Chattark, S.S. Kamble, L.P. Deshmukh, Mater. Lett. 67, 39 (2012)

    Article  Google Scholar 

  19. E. Pentia, L. Pintilie, C. Tivarus, I. Pintilie, T. Botila, Mater. Sci. Eng. B 80, 23 (2001)

    Article  Google Scholar 

  20. J.J. Valenzuela-Jauregui, R. Ramirez-Bon, Thin Solid Films 441, 104 (2003)

    Article  ADS  Google Scholar 

  21. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavaz-zoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Ger-stmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter. 21, 395502 (2009)

    Article  Google Scholar 

  22. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2K: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz (Tesch. Universitat Wien, Austria, Wien, Austria, 2001).

    Google Scholar 

  23. R. Essajai, N. Ennassiri, M. Balli, M. Zidane, E. Salmani, O. Mounkachi, M. Rouchdi, A. Abbassi, H. Ez-Zahraouy, A. Mzerd, N. Hassanain, Revisiting the magnetic and magnetocaloric properties of bulk gadolinium: a combined DFT and Monte Carlo simulations. Phys. Scr. 96, 015808 (2021). https://doi.org/10.1088/1402-4896/abc984

    Article  ADS  Google Scholar 

  24. R. El Fdil, R. Essajai, N. Ennassiri, M. Zidane, E. Salmani, A. Abbassi, N. Hassanain, A. Mzerd, H. Ez-Zahraouy, Electronic, magnetic and magneto-caloric properties in intermetallic compound PrSi. Phase Transit. 93, 1123–1131 (2020). https://doi.org/10.1080/01411594.2020.1844201

    Article  Google Scholar 

  25. S. Benyoussef, Y. EL Amraoui, H. Ez-Zahraouy, D. Mezzane, Z. Kutnjak, I.A. Luk'yanchuk, M. EL Marssi. Mean field theory and Monte Carlo simulation of phase transitions and magnetic properties of a tridimensional Fe7S8 compound, Physica Scripta. 95, 045803 (2021). https://doi.org/10.1088/1402-4896/ab5e03.

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. PhysRevLett 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  27. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley publishing, Massachusetts, 2003).

    Google Scholar 

  28. T.P. Niesen, M.R. De Guire, J. Electroceram. 6, 169 (2001)

    Article  Google Scholar 

  29. A. Carrillo-Castillo, R.C. Ambrosio Lazaro, A. Jimenez-Perez, C.A. Martinez-Peres, E.C. de la Cruz Terrazas, M.A. Quevedo-Lopez, Mater. Lett. 121, 19 (2014)

  30. S. Seghaier, N. Kamoun, R. Brini, A.B. Amara, Mater. Chem. Phys. 97, 71–80 (2006)

    Article  Google Scholar 

  31. B. Altioka, M.C. Baykul, M.R. Altiokka, J. Cryst. Growth 184, 50 (2013)

    Article  ADS  Google Scholar 

  32. M. Muthusamy, S. Muthukumaran, Optik Int. J. Light Electron Opt. 126, 5200–5206 (2015)

    Article  Google Scholar 

  33. A. Kariper, E. Güneri, F. Göde, C. Gümüs, T. Ozpozan, Mater. Chem. Phys. 129, 183–188 (2011)

  34. B. Touati, A. Gassoumi, I. Dobryden, M.M. Natile, A. Vomiero, N.K. Turki, Superlattices Microstruct. 97, 519–528 (2016)

    Article  ADS  Google Scholar 

  35. T. Tohidi, K. Jamshidi-Ghaleh, A. Namdar, R. Abdi-Ghaleh, Mater. Sci. Semicond. Process. 25, 197–206 (2014)

    Article  Google Scholar 

  36. T. Tauc, Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974), p. 159

    Book  Google Scholar 

  37. F. Davar, M. Mohammadikish, M.R. Loghman-Estarki, Z. Hamidi, Cryst. Eng. Commun. 14, 7338–7344 (2012)

    Article  Google Scholar 

  38. J.S. Toll, Causality and the dispersion relation: logical foundations. Phys. Rev. 104(6), 1760 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  39. I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J.C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, Z. Hens, ACS Nano 3, 3023 (2009)

    Article  Google Scholar 

  40. F. Göde, E. Güneri, F.M. Emen, V. Emir Kafadar, S. Ünlü, J. Luminescence 147, 41–48 (2014)

  41. H. Shaili, M. Beraich, A. El hat, M. Ouafi, E. Salmani, R. Essajai, W. Battal, M. Rouchdi, M. Taibi, N. Hassanain, A. Mzerd, J. Alloys Compd. 851, 156790 (2021)

  42. H. Shaili, E. Salmani, M. Beraich, R. Essajai, W. Battal, M. Ouafi, A. Elhat, M. Rouchdi, M. Taibi, H. Ez-Zahraouy, N. Hassanain, A. Mzerd, Opt. Mater. 107, 110136 (2020)

    Article  Google Scholar 

  43. Y. Al-Douri, H. Khachai, R. Khenata, Mater. Sci. Semicond. Process. 39, 276–282 (2015)

    Article  Google Scholar 

  44. M. Labidi, S. Ghemid, H. Meradji, S. Labidi, et F. El Haj Hassan, « Density functional calculations of Pb1−xCaxSySe1−y alloys lattice matched to different substrates », J. Phys. Chem. Solids, 73(4), 608–613.

  45. S. Ben Ameur, A. Barhoumi, R. Mimouni, M. Amlouk, H. Guermazi, Low-temperature growth and physical investigations of undoped and (In, Co) doped ZnO thin films sprayed on PEI flexible substrate, Superlattice. Microst. 84, 99–112 (2015)

  46. N.M. Balzaretti, J.A.H. da Jornada, Solid State Commun. 99, 943–948 (1996)

    Article  ADS  Google Scholar 

  47. D.M. Hoat, Phys. Lett. A 383, 1648–1654 (2019)

    Article  ADS  Google Scholar 

  48. J. Feng, X. Huang, W. Chen, J. Wu, H. Lin, Q. Cheng, D. Yun, F. Zhang, Vacuum 126, 84–90 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Madani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madani, A.E., Daoudi, O., Benyoussef, S. et al. Experimental and Ab Initio Investigation of the Physical Properties of PbS Thin Films Prepared by Chemical Bath Deposition (CBD). Braz J Phys 51, 1166–1174 (2021). https://doi.org/10.1007/s13538-021-00907-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00907-6

Keywords

Navigation