Skip to main content
Log in

Metal Organic Framework in Membrane Separation for Wastewater Treatment: Potential and Way Forward

  • Review-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Metal organic framework (MOF) is a class of porous material that has been acknowledged for its high porosity, tunable pores and distinctive chemical functionalities. This paper reviewed some of the selected MOF applied in adsorption and membrane separation for wastewater treatment. As adsorbent, certain MOF demonstrated high solute rejection and adsorption capacity, much contributed by high surface area and more active sites to bind with solutes. In another way, MOF can be incorporated as nanofiller in thin-film nanocomposite or mixed-matrix membrane. This water stable MOF inclusion has tuned the membrane chemistry and morphology to be more selective toward solute while enhancing water permeability. The stability of MOF was governed by high number of positive charge per atom, high coordination number, presence of hydrophobic functional groups and also their ability to resist coordination with water molecules. Important issues regarding with MOF in membrane had been addressed, particularly MOF agglomeration that further deteriorated membrane performance. At the end of the review, a conclusion and future perspective is suggested as remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Choong, T.S.Y.; Chuah, T.G.; Robiah, Y.; Gregory Koay, F.L.; Azni, I.: Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217(1–3), 139–166 (2007). https://doi.org/10.1016/j.desal.2007.01.015

    Article  Google Scholar 

  2. Lee, J.-Y.; She, Q.; Huo, F.; Tang, C.Y.: Metal-organic framework – based porous matrix membranes for improving mass transfer in forward osmosis membranes. J. Memb. Sci. 492, 392–399 (2015). https://doi.org/10.1016/j.memsci.2015.06.003

    Article  Google Scholar 

  3. Li, Y.; Wee, L.H.; Martens, J.A.; Vankelecom, I.F.J.: Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance. J. Memb. Sci. 523, 561–566 (2017). https://doi.org/10.1016/j.memsci.2016.09.065

    Article  Google Scholar 

  4. He, Y.; Tang, Y.P.; Ma, D.; Chung, T.S.: UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. J. Memb. Sci. 541(July), 262–270 (2017). https://doi.org/10.1016/j.memsci.2017.06.061

    Article  Google Scholar 

  5. Ding, C.; Zhang, X.; Li, C.; Hao, X.; Wang, Y.; Guan, G.: ZIF-8 incorporated polyether block amide membrane for phenol permselectivepervaporation with high efficiency. Sep. Purif. Technol. 166, 252–261 (2016). https://doi.org/10.1016/j.seppur.2016.04.027

    Article  Google Scholar 

  6. Sarango, L.; Paseta, L.; Navarro, M.; Zornoza, B.; Coronas, J.: Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration. J. Ind. Eng. Chem. 59, 8–16 (2018). https://doi.org/10.1016/j.jiec.2017.09.053

    Article  Google Scholar 

  7. Navarro, M.; Benito, J.; Paseta, L.; Gascón, I.; Coronas, J.; Téllez, C.: Thin-film nanocomposite membrane with the minimum amount of MOF by the Langmuir-Schaefer technique for nanofiltration. ACS Appl. Mater. Interfaces 10(1), 1278–1287 (2018). https://doi.org/10.1021/acsami.7b17477

    Article  Google Scholar 

  8. Hoskins, B.F.; Robson, R.: Design and construction of a new class of scaffolding-like materials comprising infinite molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI. J. Am. Chem. Soc. 112(4), 1546–1554 (1990)

    Article  Google Scholar 

  9. Yaghi, O.M.; Li, H.: Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117(41), 10401–10402 (1995)

    Article  Google Scholar 

  10. Rowsell, J.L.C.; Yaghi, O.M.: Metal-organic frameworks: a new class of porous materials. MicroporousMesoporous Mater. 73(1–2), 3–14 (2004). https://doi.org/10.1016/j.micromeso.2004.03.034

    Article  Google Scholar 

  11. Li, H.; Eddaoudi, M.; Groy, T.L.; Yaghi, O.M.: Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). J. Am. Chem. Soc. 120(33), 8571–8572 (1998). https://doi.org/10.1021/ja981669x

    Article  Google Scholar 

  12. Eddaoudi, M.; Li, H.L.; Reineke, T.; Fehr, M.; Kelley, D.; Groy, T.L.; Yaghi, O.M.: Design and synthesis of metal-carboxylate frameworks with permanent microporosity. Top. Catal. 9(1–2), 105–111 (1999). https://doi.org/10.1023/a:1019110622091

    Article  Google Scholar 

  13. Chui, S.S.Y.; Lo, S.M.F.; Charmant, J.P.H.; Orpen, A.G.; Williams, I.D.A.: Chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(5405), 1148–1150 (1999). https://doi.org/10.1126/science.283.5405.1148

    Article  Google Scholar 

  14. Kusgens, P.; Rose, M.; Senkovska, I.; Frode, H.; Henschel, A.; Siegle, S.; Kaskel, S.: Characterization of metal-organic frameworks by water adsorption. MicroporousMesoporous Mater. 120(3), 325–330 (2009). https://doi.org/10.1016/j.micromeso.2008.11.020

    Article  Google Scholar 

  15. Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759), 276–279 (1999). https://doi.org/10.1038/46248

    Article  Google Scholar 

  16. Panella B.; Hirscher M: Hydrogen physisorption in metal-organic porous crystals. Adv. Mater. 17(5), 538–541 (2005). https://doi.org/10.1002/adma.200400946

    Article  Google Scholar 

  17. Lu, P.; Wu, Y.; Kang, H.; Wei, H.; Liu, H.; Fang, M.: What can pKa and NBO charges of the ligands tell us about the water and thermal stability of metal organic frameworks? J. Mater. Chem. A 2(38), 16250–16267 (2014). https://doi.org/10.1039/C4TA03154G

    Article  Google Scholar 

  18. Wang, C.; Liu, X.; KeserDemir, N.; Chen, J.P.; Li, K.: Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 45(18), 5107–5134 (2016). https://doi.org/10.1039/C6CS00362A

    Article  Google Scholar 

  19. Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M.: The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444–1230444 (2013). https://doi.org/10.1126/science.1230444

    Article  Google Scholar 

  20. Wang, Z. Design of metal-organic framework materials based upon inorganic clusters and polycarboxylates. Scholar Commons 2006

  21. Li, B.; Wen, H.M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B.: Emerging multifunctional metal-organic framework materials. Adv. Mater. 28(40), 8819–8860 (2016). https://doi.org/10.1002/adma.201601133

    Article  Google Scholar 

  22. Sánchez-Laínez, J.; Zornoza, B.; Orsi, A.F.; Łozińska, M.M.; Dawson, D.M.; Ashbrook, S.E.; Francis, S.M.; Wright, P.A.; Benoit, V.; Llewellyn, P.L., et al.: Synthesis of ZIF-93/11 hybrid nanoparticles via post-synthetic modification of ZIF-93 and their use for H2/Co2 separation. Chem. A Eur. J. 24(43), 11211–11219 (2018). https://doi.org/10.1002/chem.201802124

    Article  Google Scholar 

  23. Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 103(27), 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103

    Article  Google Scholar 

  24. Vu, T.A.; Le, G.H.; Dao, C.D.; Dang, L.Q.; Nguyen, K.T.; Nguyen, Q.K.; Dang, P.T.; Tran, H.T.K.; Duong, Q.T.; Nguyen, T.V., et al.: Arsenic removal from aqueous solutions by adsorption using novel MIL-53(Fe) as a highly efficient adsorbent. RSC Adv. 5(7), 5261–5268 (2015). https://doi.org/10.1039/C4RA12326C

    Article  Google Scholar 

  25. Jian, M.; Liu, B.; Zhang, G.; Liu, R.; Zhang, X.: Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Coll. Surf. A Physicochem. Eng. Asp. 465, 67–76 (2015). https://doi.org/10.1016/j.colsurfa.2014.10.023

    Article  Google Scholar 

  26. Nicomel, N.R.; Leus, K.; Folens, K.; Van Der Voort, P.; Du Laing, G.: Technologies for arsenic removal from water: current status and future perspectives. Int. J. Environ. Res. Public Health 13(1), 1–24 (2015). https://doi.org/10.3390/ijerph13010062

    Article  Google Scholar 

  27. Zhang, H.; Lan, X.; Bai, P.; Guo, X.: Adsorptive removal of acetic acid from water with metal-organic frameworks. Chem. Eng. Res. Des. 111, 127–137 (2016). https://doi.org/10.1016/j.cherd.2016.04.020

    Article  Google Scholar 

  28. Howarth, A.J.; Katz, M.J.; Wang, T.C.; Platero-Prats, A.E.; Chapman, K.W.; Hupp, J.T.; Farha, O.K.: High efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks. J. Am. Chem. Soc. 137(23), 7488–7494 (2015). https://doi.org/10.1021/jacs.5b03904

    Article  Google Scholar 

  29. Xiong, Y.Y.; Li, J.Q.; Le Gong, Le.; Feng, X.F.; Meng, L.N.; Zhang, L.; Meng, P.P.; Luo, M.B.; Luo, F.: Using MOF-74 for Hg2+ removal from ultra-low concentration aqueous solution. J. Solid State Chem. 246, 16–22 (2017)

    Article  Google Scholar 

  30. Zhang, K.; Liu, N.; Li, Y.; Kong, L.; Chen, K.; He, J.; Cai, X.; Wang, X.; Meng, F.; Huang, X., et al.: Performance of a novelly-defined zirconium metal-organic frameworks adsorption membrane in fluoride removal. J. Colloid Interface Sci. 484, 162–172 (2016). https://doi.org/10.1016/j.jcis.2016.08.074

    Article  Google Scholar 

  31. Park, E.Y.; Hasan, Z.; Khan, N.A.; Jhung, S.H.: Adsorptive removal of bisphenol-a from water with a metal-organic framework, a porous chromium-benzenedicarboxylate. J. Nanosci. Nanotechnol. 13(4), 2789–2794 (2013). https://doi.org/10.1166/jnn.2013.7411

    Article  Google Scholar 

  32. Jung, B.K.; Hasan, Z.; Jhung, S.H.: Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal-organic framework. Chem. Eng. J. 234, 99–105 (2013). https://doi.org/10.1016/j.cej.2013.08.110

    Article  Google Scholar 

  33. Weser, O.; Veryazov, V.: In Search of the reason for the breathing effect of MIL53 metal-organic framework: an Ab initio multiconfigurational study. Front. Chem. 5(111), 1–9 (2017). https://doi.org/10.3389/fchem.2017.00111

    Article  Google Scholar 

  34. Zhou, M.; Wu, Y.; Qiao, J.; Zhang, J.; McDonald, A.; Li, G.; Li, F.: The removal of bisphenol a from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al). J. Colloid Interface Sci. 405, 157–163 (2013). https://doi.org/10.1016/j.jcis.2013.05.024

    Article  Google Scholar 

  35. Luo, X.; Ding, L.; Luo, J.: Adsorptive removal of Pb(II) Ions from aqueous samples with amino-functionalization of metal-organic frameworks MIL-101(Cr). J. Chem. Eng. Data 60(6), 1732–1743 (2015). https://doi.org/10.1021/je501115m

    Article  Google Scholar 

  36. Kandiah, M.; Nilsen, M.H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E.A.; Bonino, F.; Lillerud, K.P.: Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 22(24), 6632–6640 (2010). https://doi.org/10.1021/cm102601v

    Article  Google Scholar 

  37. Xie, Q.; Li, Y.; Lv, Z.; Zhou, H.; Yang, X.; Chen, J.: Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101. Sci. Rep. 7(1), 1–15 (2017). https://doi.org/10.1038/s41598-017-03526-x

    Article  Google Scholar 

  38. Kandiah, M.; Usseglio, S.; Svelle, S.; Olsbye, U.; Lillerud, K.; Tilset, M.: Post-synthetic modification of the metal–organic framework compound UiO-66. J. Mater. Chem. 20(44), 9848 (2010). https://doi.org/10.1039/c0jm02416c

    Article  Google Scholar 

  39. Hasan, Z.; Khan, N.A.; Jhung, S.H.: Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks. Chem. Eng. J. 284, 1406–1413 (2016). https://doi.org/10.1016/j.cej.2015.08.087

    Article  Google Scholar 

  40. Sarker, M.; Song, J.Y.; Jhung, S.H.: Carboxylic-acid-functionalized UiO-66-NH2: a promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chem. Eng. J. 331, 124–131 (2018). https://doi.org/10.1016/j.cej.2017.08.017

    Article  Google Scholar 

  41. Liu, J.; Yin, X.; Liu, T.: Amidoxime-functionalized metal-organic frameworks UiO-66 for U(VI) adsorption from aqueous solution. J. Taiwan Inst. Chem. Eng. 95, 1–8 (2018). https://doi.org/10.1016/j.jtice.2018.08.012

    Article  Google Scholar 

  42. Leus, K.; Perez, J.P.H.; Folens, K.; Meledina, M.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P.: UiO-66-(SH)2 as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions. Faraday Discuss. 201, 145–161 (2017). https://doi.org/10.1039/c7fd00012j

    Article  Google Scholar 

  43. Ke, F.; Qiu, L.G.; Yuan, Y.P.; Peng, F.M.; Jiang, X.; Xie, A.J.; Shen, Y.H.; Zhu, J.F.: Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg 2+ from water. J. Hazard. Mater. 196, 36–43 (2011). https://doi.org/10.1016/j.jhazmat.2011.08.069

    Article  Google Scholar 

  44. Yi Suen, S.: Mixed matrix membranes for adsorption application. J. Chem. Eng. Process Technol. 6(1), 1–2 (2015). https://doi.org/10.4172/2157-7048.1000e119

    Article  Google Scholar 

  45. Zheng, Y.M.; Zou, S.W.; Nanayakkara, K.G.N.; Matsuura, T.; Chen, J.P.: Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane. J. Memb. Sci. 374(1–2), 1–11 (2011). https://doi.org/10.1016/j.memsci.2011.02.034

    Article  Google Scholar 

  46. Liang, R.; Hatat-Fretile, M.; Hu, A.; Zhou, N.: Fundamentals on adsorption, membrane filtration, and advanced oxidation processes for water treatment. Springer (2014) https://doi.org/10.1007/978-3-319-06578-6

    Book  Google Scholar 

  47. Zhao, D.; Yu, Y.; Chen, J.P.: Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for decontamination of arsenic: material design and optimization, study of mechanisms, and application prospects. Chemosphere 155, 630–639 (2016). https://doi.org/10.1016/j.chemosphere.2016.03.131

    Article  Google Scholar 

  48. Zhao, D.; Yu, Y.; Wang, C.; Chen, J.P.: Zirconium/PVA modified flat-sheet PVDF membrane as a cost-effective adsorptive and filtration material: a case study on decontamination of organic arsenic in aqueous solutions. J. Colloid Interface Sci. 477, 191–200 (2016). https://doi.org/10.1016/j.jcis.2016.04.043

    Article  Google Scholar 

  49. Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q.: Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl. Mater. Interfaces 10(22), 18619–18629 (2018). https://doi.org/10.1021/acsami.8b01454

    Article  Google Scholar 

  50. Kadhom, M.; Hu, W.; Deng, B.: Thin film nanocomposite membrane filled with metal-organic frameworks UiO-66 and MIL-125 nanoparticles for water desalination. Membranes (Basel). 7(2), 1–16 (2017). https://doi.org/10.3390/membranes7020031

    Article  Google Scholar 

  51. Burtch, N.C.; Jasuja, H.; Walton, K.S.: Water stability and adsorption in metal − organic frameworks. Chem. Rev. 114(20), 10575–10612 (2014). https://doi.org/10.1021/cr5002589

    Article  Google Scholar 

  52. Sotto, A.; Orcajo, G.; Arsuaga, J.M.; Calleja, G.; Landaburu-Aguirre, J.: Preparation and characterization of MOF-PES ultrafiltration membranes. J. Appl. Polym. Sci. 132(21), 1–9 (2015). https://doi.org/10.1002/app.41633

    Article  Google Scholar 

  53. Gnanasekaran, G.; Balaguru, S.; Arthanareeswaran, G.; Das, D.B.: Removal of hazardous material from wastewater by using metal organic framework (MOF) embedded polymeric membranes. Sep. Sci. Technol. 54(3), 434–446 (2018). https://doi.org/10.1080/01496395.2018.1508232

    Article  Google Scholar 

  54. Phillip, W.A.; Schiffman, J.D.; Elimelech, M.: High performance thin-film composite forward osmosis membrane. Environ. Sci. Technol. 44(10), 3812–3818 (2010). https://doi.org/10.1021/es1002555

    Article  Google Scholar 

  55. Ni, Z.-Y.; Cheng, L.-H.; Hu, Y.-X.; Li, J.-Y.; Zhou, Z.-Y.; Xu, X.-H.: Membrane fouling of forward osmosis in dewatering of soluble algal products: comparison of TFC and CTA membranes. J. Memb. Sci. 552, 213–221 (2018). https://doi.org/10.1016/j.memsci.2018.02.006

    Article  Google Scholar 

  56. Li, Z.Y.; Vrouwenvelder, J.S.; Amy, G.; Sarp, S.; Park, Y.G.; Valladares Linares, R.: Higher boron rejection with a new TFC forward osmosis membrane. Desalin. Water Treat. 55(10), 2734–2740 (2014). https://doi.org/10.1080/19443994.2014.940220

    Article  Google Scholar 

  57. Abu Tarboush, B.J.; Arafat, H.A.; Matsuura, T.; Rana, D.: Recent advances in thin film composite (TFC) reverse osmosis and nanofiltration membranes for desalination. J. Appl. Membr. Sci. Technol. 10(1), 41–50 (2018). https://doi.org/10.11113/amst.v10i1.72

    Article  Google Scholar 

  58. Ma, D.; Peh, S.B.; Han, G.; Chen, S.B.: Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection. ACS Appl. Mater. Interfaces 9(8), 7523–7534 (2017). https://doi.org/10.1021/acsami.6b14223

    Article  Google Scholar 

  59. Jeong, B.H.; Hoek, E.M.V.; Yan, Y.; Subramani, A.; Huang, X.; Hurwitz, G.; Ghosh, A.K.; Jawor, A.: Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Memb. Sci. 294(1–2), 1–7 (2007). https://doi.org/10.1016/j.memsci.2007.02.025

    Article  Google Scholar 

  60. Dai, R.; Zhang, X.; Liu, M.; Wu, Z.; Wang, Z.: Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis. J. Memb. Sci (2019). https://doi.org/10.1016/j.memsci.2018.11.075

    Article  Google Scholar 

  61. Wang, L.; Fang, M.; Liu, J.; He, J.; Deng, L.; Li, J.; Lei, J.: The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water. RSC Adv. 5(63), 50942–50954 (2015). https://doi.org/10.1039/c5ra06185g

    Article  Google Scholar 

  62. Sorribas, S.; Gorgojo, P.; Téllez, C.; Coronas, J.; Livingston, A.G.: High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 135(40), 15201–15208 (2013). https://doi.org/10.1021/ja407665w

    Article  Google Scholar 

  63. Zirehpour, A.; Rahimpour, A.; Ulbricht, M.: Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane. J. Memb. Sci. 531, 59–67 (2017). https://doi.org/10.1016/j.memsci.2017.02.049

    Article  Google Scholar 

  64. Golpour, M.; Pakizeh, M.: Preparation and characterization of new PA-MOF/PPSU-GO membrane for the separation of KHI from water. Chem. Eng. J. 345, 221–232 (2018). https://doi.org/10.1016/J.CEJ.2018.03.154

    Article  Google Scholar 

  65. Qiu, M.; He, C.: Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer. J. Hazard. Mater. 2019(367), 339–347 (2018). https://doi.org/10.1016/j.jhazmat.2018.12.096

    Article  Google Scholar 

  66. Misdan, N.; Ramlee, N.; Hairom, N.H.H.; Ikhsan, S.N.W.; Yusof, N.; Lau, W.J.; Ismail, A.F.; Nordin, N.A.H.M.: CuBTC metal organic framework incorporation for enhancing separation and antifouling properties of nanofiltration membrane. Chem. Eng. Res. Des. 148, 227–239 (2019). https://doi.org/10.1016/j.cherd.2019.06.004

    Article  Google Scholar 

  67. Zhu, S.; Zhao, S.; Wang, Z.; Tian, X.; Shi, M.; Wang, J.; Wang, S.: Improved performance of polyamide thin-film composite nanofiltration membrane by using polyethersulfone/polyaniline membrane as the substrate. J. Memb. Sci. 493, 263–274 (2015). https://doi.org/10.1016/j.memsci.2015.07.013

    Article  Google Scholar 

  68. Wang, C.; Liu, X.; Chen, J.P.; Li, K.: Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Sci. Rep. 5, 16613 (2015). https://doi.org/10.1038/srep16613

    Article  Google Scholar 

  69. Huang, L.; McCutcheon, J.R.: Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. J. Membr. Sci. 483, 25–33 (2015). https://doi.org/10.1016/j.memsci.2015.01.025

    Article  Google Scholar 

  70. Ma, D.; Han, G.; Peh, S.B.; Chen, S.B.: Water-stable metal-organic framework UiO-66 for performance enhancement of forward osmosis membranes. Ind. Eng. Chem. Res. 56(44), 12773–12782 (2017). https://doi.org/10.1021/acs.iecr.7b03278

    Article  Google Scholar 

  71. Zhu, L.; Yu, H.; Zhang, H.; Shen, J.; Xue, L.; Gao, C.; Van Der, B.B.: Mixed matrix membranes containing MIL-53 ( Al ) for nanofiltration. RSC Adv. 5, 73068–73076 (2015). https://doi.org/10.1039/C5RA10259F

    Article  Google Scholar 

  72. Vanduyfhuys, L.; Verstraelen, T.; Vandichel, M.; Waroquier, M.; Van Speybroeck, V.: Ab initio parametrized force field for the flexible metal-organic framework MIL-53(Al). J. Chem. Theory Comput. 8(9), 3217–3231 (2012). https://doi.org/10.1021/ct300172m

    Article  Google Scholar 

  73. Ruan, H.; Guo, C.; Yu, H.; Shen, J.; Gao, C.; Sotto, A.; Van der Bruggen, B.: Fabrication of a MIL-53(Al) nanocomposite membrane and potential application in desalination of dye solutions. Ind. Eng. Chem. Res. 53(46), 12099–12110 (2016). https://doi.org/10.1021/acs.iecr.6b03201

    Article  Google Scholar 

  74. Yuan, H.G.; Liu, Y.Y.; Liu, T.Y.; Wang, X.L.: Self-standing nanofilms of polysulfone doped with sulfonated polysulfone via solvent evaporation for forward osmosis. J. Memb. Sci. 523, 567–575 (2017). https://doi.org/10.1016/j.memsci.2016.09.034

    Article  Google Scholar 

  75. Liu, T.Y.; Yuan, H.G.; Liu, Y.Y.; Ren, D.; Su, Y.C.; Wang, X.: Metal-organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity. ACS Nano 12(9), 9253–9265 (2018). https://doi.org/10.1021/acsnano.8b03994

    Article  Google Scholar 

  76. Leus, K.; Bogaerts, T.; De Decker, J.; Depauw, H.; Hendrickx, K.; Vrielinck, H.; Van Speybroeck, V.; Van Der Voort, P.: Systematic study of the chemical and hydrothermal stability of selected “stable” metal organic frameworks. MicroporousMesoporous Mater. 226, 110–116 (2016). https://doi.org/10.1016/j.micromeso.2015.11.055

    Article  Google Scholar 

  77. Low, J.J.; Benin, A.I.; Jakubczak, P.; Abrahamian, J.F.; Faheem, S.A.; Willis, R.R.: Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J. Am. Chem. Soc. 5, 15834–15842 (2009). https://doi.org/10.1021/ja9061344

    Article  Google Scholar 

  78. Liu, X.; Demir, N.K.; Wu, Z.; Li, K.: Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137(22), 6999–7002 (2015). https://doi.org/10.1021/jacs.5b02276

    Article  Google Scholar 

  79. Wu, H.; Chua, Y.S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W.: Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 135(28), 10525–10532 (2013). https://doi.org/10.1021/ja404514r

    Article  Google Scholar 

  80. Li, Y.; Wee, L.H.; Volodin, A.; Martens, J.A.; Vankelecom, I.F.J.: Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method. Chem. Commun. 51(5), 918–920 (2015). https://doi.org/10.1039/C4CC06699E

    Article  Google Scholar 

  81. Denny, M.S.; Cohen, S.M.: In situ modification of metal-organic frameworks in mixed-matrix membranes. Angew. Chemie Int. Ed. 54(31), 9029–9032 (2015). https://doi.org/10.1002/anie.201504077

    Article  Google Scholar 

  82. Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P.: A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Soc. 6, 13850–13851 (2008)

    Article  Google Scholar 

  83. ZahirMohdPauzi, M.; Mu’ammarMahpoz, N.; Abdullah, N.; Rahman, M.A.; HamimahAbas, K.; Abd Aziz, A.; HasbullahPadzillah, M.; Hafiz Dzarfan Othman, M.; Jaafar, J.; Fauzi Ismail, A.: Feasibility study of CAU-1 deposited on alumina hollow fiber for desalination applications. Sep. Purif. Technol. (2019). https://doi.org/10.1016/j.seppur.2019.02.021

    Article  Google Scholar 

  84. Sun, H.; Tang, B.; Wu, P.: Development of hybrid ultrafiltration membranes with improved water separation properties using modified superhydrophilic metal-organic framework nanoparticles. ACS Appl. Mater. Interfaces 9(25), 21473–21484 (2017). https://doi.org/10.1021/acsami.7b05504

    Article  Google Scholar 

  85. Hu, Z.; Chen, Y.; Jiang, J.: Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation. J. Chem. Phys. (2011). https://doi.org/10.1063/1.3573902

    Article  Google Scholar 

  86. Wang, Z.; Wang, Z.; Lin, S.; Jin, H.; Gao, S.; Zhu, Y.; Jin, J.: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-04467-3

    Article  Google Scholar 

  87. Sun, H.; Tang, B.; Wu, P.: Hydrophilic hollow zeolitic imidazolate framework-8 modified ultrafiltration membranes with significantly enhanced water separation properties. J. Memb. Sci. 551, 283–293 (2018). https://doi.org/10.1016/j.memsci.2018.01.053

    Article  Google Scholar 

  88. Kim, S.; Muñoz-senmache, J.C.; Jun, B.; Park, C.M.; Jang, A.; Yu, M.; Hernández-maldonado, A.J.; Yoon, Y.: A metal organic framework-ultrafiltration hybrid system for removing selected pharmaceuticals and natural organic matter. Chem. Eng. J. 382, 122920 (2019). https://doi.org/10.1016/j.cej.2019.122920

    Article  Google Scholar 

  89. Wang, H.; Zhao, S.; Liu, Y.; Yao, R.; Wang, X.; Cao, Y.; Ma, D.; Zou, M.; Cao, A.; Feng, X., et al.: Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nat. Commun. 10(1), 1–9 (2019). https://doi.org/10.1038/s41467-019-12114-8

    Article  Google Scholar 

  90. Rajaeian, B.; Heitz, A.; Tade, M.O.; Liu, S.: Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. J. Memb. Sci. 485, 48–59 (2015). https://doi.org/10.1016/j.memsci.2015.03.009

    Article  Google Scholar 

  91. Rajaeian, B.; Rahimpour, A.; Tade, M.O.; Liu, S.: Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination 313, 176–188 (2013). https://doi.org/10.1016/j.desal.2012.12.012

    Article  Google Scholar 

  92. Razmjou, A.; Mansouri, J.; Chen, V.: The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J. Memb. Sci. 378(1–2), 73–84 (2011). https://doi.org/10.1016/j.memsci.2010.10.019

    Article  Google Scholar 

  93. Xu, Y.; Gao, X.; Wang, Q.; Wang, X.; Ji, Z.; Gao, C.: Highly stable MIL-101(Cr) doped water permeable thin film nanocomposite membranes for water treatment. RSC Adv. 6(86), 82669–82675 (2016). https://doi.org/10.1039/C6RA16896E

    Article  Google Scholar 

  94. Prince, J.A.; Bhuvana, S.; Anbharasi, V.; Ayyanar, N.; Boodhoo, K.V.K.; Singh, G.: Self-cleaning metal organic framework (MOF) based ultra filtration membranes - a solution to bio-fouling in membrane separation processes. Sci. Rep. 4, 1–9 (2014). https://doi.org/10.1038/srep06555

    Article  Google Scholar 

  95. McGaughey, A.L.; Gustafson, R.D.; Childress, A.E.: Effect of long-term operation on membrane surface characteristics and performance in membrane distillation. J. Memb. Sci. 543, 143–150 (2017). https://doi.org/10.1016/j.memsci.2017.08.040

    Article  Google Scholar 

  96. Lee, K.H.; Kang, B.C.; Lee, J.B.: Acrylic wastewater treatment and long-term operation using a membrane separation system. Desalination 191(1–3), 169–177 (2006). https://doi.org/10.1016/j.desal.2005.09.011

    Article  Google Scholar 

  97. Dong, Y.; Tang, J.; Wang, Z.; Wu, Z.; Zhu, C.; Wang, Q.: A forward osmosis membrane system for the post-treatment of MBR-treated landfill leachate. J. Memb. Sci. 471, 192–200 (2014). https://doi.org/10.1016/j.memsci.2014.08.023

    Article  Google Scholar 

  98. Dey, C.; Kundu, T.; Biswal, B.P.; Mallick, A.; Banerjee, R.: Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. ActaCrystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 70(1), 3–10 (2014). https://doi.org/10.1107/S2052520613029557

    Article  Google Scholar 

  99. Molavi, H.; Hakimian, A.; Shojaei, A.; Raeiszadeh, M.: Selective dye adsorption by highly water stable metal-organic framework: long term stability analysis in aqueous media. Appl. Surf. Sci. 445, 424–436 (2018). https://doi.org/10.1016/j.apsusc.2018.03.189

    Article  Google Scholar 

  100. Lin, K.Y.A.; Liu, Y.T.; Chen, S.Y.: Adsorption of fluoride to UiO-66-NH2 in water: stability, kinetic, isotherm and thermodynamic studies. J. Colloid Interface Sci. 461, 79–87 (2016). https://doi.org/10.1016/j.jcis.2015.08.061

    Article  Google Scholar 

  101. Oveisi, M.; Asli, M.A.; Mahmoodi, N.M.: MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems. J. Hazard. Mater. 347, 123–140 (2018). https://doi.org/10.1016/j.jhazmat.2017.12.057

    Article  Google Scholar 

  102. Wu, S.C.; You, X.; Yang, C.; Cheng, J.H.: Adsorption behavior of methyl orange onto an aluminum-based metal organic framework, MIL-68(Al). Water Sci. Technol. 75(12), 2800–2810 (2017). https://doi.org/10.2166/wst.2017.154

    Article  Google Scholar 

  103. Li, T.; Zhang, W.; Zhai, S.; Gao, G.; Ding, J.; Zhang, W.; Liu, Y.; Zhao, X.; Pan, B.; Lv, L.: Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane. Water Res. 143, 87–98 (2018). https://doi.org/10.1016/j.watres.2018.06.031

    Article  Google Scholar 

  104. Mahpoz, N.M.; Pauzi, M.Z.M.; Othman, M.H.D.; Ismail, A.F.; Aziz, A.A.; Abas, K.H.; Jaafar, J.; Abdullah, N.; Rahman, M.A.: Synthesis and performance evaluation of zeolitic imidazolate framework-8 membranes deposited onto alumina hollow fiber for desalination. Korean J. Chem. Eng. 35(3), 1–11 (2019). https://doi.org/10.1007/s11814-018-0214-6

    Article  Google Scholar 

  105. Lee, J.Y.; She, Q.; Huo, F.; Tang, C.Y.: Metal-organic framework-based porous matrix membranes for improving mass transfer in forward osmosis membranes. J. Memb. Sci. 492, 392–399 (2015). https://doi.org/10.1016/j.memsci.2015.06.003

    Article  Google Scholar 

  106. Jee, K.Y.; Kim, J.S.; Kim, J.; Lee, Y.T.: Effect of hydrophilic Cu3(BTC)2additives on the performance of PVDF membranes for water flux improvement. Desalin. Water Treat. 57(38), 17637–17645 (2016). https://doi.org/10.1080/19443994.2015.1085912

    Article  Google Scholar 

  107. Zirehpour, A.; Rahimpour, A.; Khoshhal, S.; Firouzjaei, M.D.; Ghoreyshi, A.A.: The impact of MOF feasibility to improve the desalination performance and antifouling properties of FO membranes. RSC Adv. 6(74), 70174–70185 (2016). https://doi.org/10.1039/c6ra14591d

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Universiti Teknologi Malaysia under the Research University Grant and Ministry of Higher Education Malaysia under HICOE research grant number R.J090301.7846.4J184 and R.J090301.7846.4J185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhana Jaafar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajuddin, M.H.A., Jaafar, J., Hasbullah, H. et al. Metal Organic Framework in Membrane Separation for Wastewater Treatment: Potential and Way Forward. Arab J Sci Eng 46, 6109–6130 (2021). https://doi.org/10.1007/s13369-021-05509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05509-7

Keywords

Navigation