Skip to main content
Log in

A Facile Synthesis of GO/CuO Nanocomposite with Enhancing Photocatalytic Activity for the Degradation of Azure-B Dye and Its Antimicrobial Behavior

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) and GO/CuO nanocomposites were synthesized by modified Hummer’s and hydrothermal methods, respectively, and characterized using standard techniques such as TEM, TGA-DTA, UV–Vis DRS, EDS and mapping, FESEM, FTIR, Raman, XRD, BET surface area and PL spectra. The photocatalytic degradation of Azure-B dye was carried to evaluate the photocatalytic efficiency of GO/CuO nanocomposite. The superior catalytic activity of the GO/CuO nanocomposite was attributed to the synergism that existed between GO and CuO nanoparticles such as high surface area and small size of GO/CuO NPs. The recycling results demonstrated that the GO/CuO nanocomposite exhibited good stability and long-term durability. In addition, antibacterial studies of the GO and GO/CuO nanocomposite were investigated against Gram-positive and Gram-negative bacterial strains. These were also assayed for their antifungal activity against fungal strains Penicillium spp. and A. flavus. The newly synthesized GO/CuO nanocomposite was reported to show excellent antibacterial activity as compared to GO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Scheme 1

Similar content being viewed by others

References

  1. Honda, K.; Fujishima, A.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0

    Article  Google Scholar 

  2. Hoffmann, M.R.; Scot, T.M.; Choi, W.; Bahneman, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995). https://doi.org/10.1021/cr00033a004

    Article  Google Scholar 

  3. Li, F.B.; Li, X.Z.; Hou, M.F.: Photo catalytic degradation of 2-mercaptobiazole in aqueous La3+-TiO2 suspention for odor control. Appl. Catal. B 48, 185–194 (2004). https://doi.org/10.1016/j.apcatb.2003.10.003

    Article  Google Scholar 

  4. He, Y.; Dai, X.; Ma, S.; Chen, L.; Feng, Z.; Xing, P.; Yu, J.; Wu, Y.: Hydrothermal preparation of carbon modified KNb3O8 nanosheets for efficient photocatalytic H2 evolution. Ceram. Int. 46, 11421–11426 (2020)

    Article  Google Scholar 

  5. Chen, P.; Chen, L.; Ge, S.; Zhang, W.; Wu, M.; Xing, P.; Rotamond, T.B.; Lin, H.; Wu, Y.; He, Y.: Microwave heating preparation of phosphorus doped g-C3N4 and its enhanced performance for photocatalytic H2 evolution in the help of Ag3PO4 nanoparticles. Int. J. Hydrog. Energ. 45, 14354–14367 (2020)

    Article  Google Scholar 

  6. Feng, Z.; Zeng, L.; Zhang, Q.; Ge, S.; Zhao, X.; Lin, H.; He, Y.: In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in methyl orange degradation under visible light. J. Environ. Sci. 87, 149–162 (2020)

    Article  Google Scholar 

  7. Fu, H.; Xu, T.; Zhu, S.; Zhu, Y.: Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60. Environ. Sci. Technol. 42, 8064–8069 (2008). https://doi.org/10.1021/es801484x

    Article  Google Scholar 

  8. Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J.: P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2009). https://doi.org/10.1021/nn901221k

    Article  Google Scholar 

  9. Gupta, S.; Banu, R.; Ameta, C.; Ameta, R.; Punjabi, P.B.: Emerging trends in the syntheses of heterocycles using graphene-based carbocatalysts: and update. Topics. Curr. Chem. 13, 377–389 (2019)

    Google Scholar 

  10. Chen, Y.C.; Katsumata, K.I.; Chiu, Y.S.; Okada, K.; Matsushita, N.; Hsu, Y.J.: ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation. Appl. Catal. A 490, 1–9 (2015). https://doi.org/10.1016/j.apcata.2014.10.055

    Article  Google Scholar 

  11. Li, B.; Liu, T.; Wang, Y.; Wang, Z.: ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J. Colloid Interface Sci. 377, 114–121 (2012). https://doi.org/10.1016/j.jcis.2012.03.060

    Article  Google Scholar 

  12. Pu, Y.C.; Chou, H.Y.; Kuo, W.S.; Wei, K.H.; Hsu, Y.J.: Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide (Cu2O-rGO) nano heterostructures and their related visible-light driven photocatalysis. Appl. Catal. B 204, 21–32 (2017)

    Article  Google Scholar 

  13. Tsai, K.A.; Hsu, Y.J.: Graphene quantum dots mediated charge transfer of CdSe nanocrystals for enhancing photoelectrochemical hydrogen production. Appl. Catal. B 164, 271–278 (2015). https://doi.org/10.1016/j.apcatb.2014.09.034

    Article  Google Scholar 

  14. Fernández-García, M.; Martínez-Arias, A.; Hanson, J.C.; Rodriguez, J.A.: Nanostructured oxides in chemistry: characterization and properties. Chem. Rev. 104, 4063–4104 (2004)

    Article  Google Scholar 

  15. Nagirnyak, S.; Lutz, V.; Dontsova, T.; Astrelin, I.: The effect of the synthesis conditions on morphology of tin (IV) oxide obtained by vapor transport method. In: Fesenko, O., Yatsenko, L. (eds.) Nanophysics, Nanophotonics, Surface Studies, and Applications, p. 331. Springer, Berlin (2016)

    Chapter  Google Scholar 

  16. Chang, C.H.; He, Y.J.; Pan, C.Q.: 4-Aqueous methods for the synthesis of colloidal metal oxide nanoparticles at ambient pressure. In: Thomas, S., Sunny, A.T., Velayudhan, P. (eds.) Colloidal Metal Oxide Nanoparticles Synthesis, Characterization and Applications, Metal Oxides, pp. 41–66. Elsevier, Amsterdam (2020)

    Chapter  Google Scholar 

  17. Choi, H.H.; Park, J.; Singh, R.K.: Nanosized CuO encapsulated silica particles using an electrochemical deposition coating. Electrochem. Solid State Lett. 7, 10–12 (2004)

    Article  Google Scholar 

  18. El-Trass, A.; Elshamy, H.; El-Mehasseb, I.; El-Kemary, M.: CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 258, 2997–3001 (2012). https://doi.org/10.1016/j.apsusc.2011.11.025

    Article  Google Scholar 

  19. Lewis, K.; Klibanov, A.M.: Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol. 23, 343–348 (2005). https://doi.org/10.1016/j.tibtech.2005.05.004

    Article  Google Scholar 

  20. Raghupati, K.R.; Koodali, R.T.; Manna, A.C.: Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27, 4020–4028 (2011). https://doi.org/10.1021/la104825u

    Article  Google Scholar 

  21. Rosi, N.L.; Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005). https://doi.org/10.1021/cr030067f

    Article  Google Scholar 

  22. Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Memic, A.: Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and -negative bacterial strains. Int. J. Nanomed. 7, 3527–3535 (2012). https://doi.org/10.2147/IJN.S29020

    Article  Google Scholar 

  23. Liu, J.; Jin, J.; Deng, Z.; Huang, S.Z.; Hu, Z.Y.; Wang, L.; Wang, C.; Chen, L.H.; Li, Y.; Tendeloo, G.V.; Su, B.: L: tailoring CuO nanostructures for enhanced photocatalytic property. J. Colloid Interface Sci. 384, 1–9 (2012)

    Article  Google Scholar 

  24. Huang, J.; Tang, F.; Gu, C.; Shi, C.; Zhai, M.: Flower-like CuO hierarchical nanostructures: synthesis, characterization, and property. Front. Optoelectron. 5, 429–434 (2012)

    Article  Google Scholar 

  25. Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.-W.; Voon, C.H.: Synthesis of graphene oxide using modified hummers method: solvent influence. Proc. Eng. 184, 469–477 (2017). https://doi.org/10.1016/j.proeng.2017.04.118

    Article  Google Scholar 

  26. Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.B.T.; Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034

    Article  Google Scholar 

  27. Song, J.; Wang, X.; Chang, C.T.: Preparation and characterization of graphene oxide. J. Nanomater. (2014). https://doi.org/10.1155/2014/276143

    Article  Google Scholar 

  28. Thakur, S.; Karak, N.: Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331–5339 (2012)

    Article  Google Scholar 

  29. Wang, W.; Liu, Z.; Liu, Y.; Xu, C.; Zheng, C.; Wang, G.: A simple wet-chemical synthesis and characterization of CuO nanorods. Appl. Phys. A 76, 417–420 (2003)

    Article  Google Scholar 

  30. Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  Google Scholar 

  31. Ahmad, J.; Majid, K.: Enhanced visible light driven photocatalytic activity of CdO-Graphene oxide heterostructures for the degredation of organic pollutants. New J. Chem. 42, 3246–3259 (2018)

    Article  Google Scholar 

  32. Zhang, W.X.; Cui, J.C.; Tao, C.A.; Wu, Y.G.; Li, Z.P.; Ma, L.; Wen, Y.Q.; Li, G.T.: A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew. Chem. Int. Ed. 48, 5864–5868 (2009)

    Article  Google Scholar 

  33. Lu, J.; Yang, J.X.; Wang, J.; Lim, A.; Wang, S.; Loh, K.P.: One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 2367–2375 (2009)

    Article  Google Scholar 

  34. Deng, Y.; Handoko, A.D.; Du, Y.; Xi, S.; Yeo, B.S.: In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of cuiii oxides as catalytically active species. ACS Catal. 6, 2473–2481 (2016)

    Article  Google Scholar 

  35. Paredes, J.I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D.: Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008)

    Article  Google Scholar 

  36. Shin, H.J.; Kim, K.K.; Benayad, A.; Yoon, S.M.; Park, H.K.; Jung, I.S.; Jin, M.H.; Jiong, H.K.; Kim, J.M.; Choi, J.Y.; Lee, Y.H.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19, 1987–1992 (2009)

    Article  Google Scholar 

  37. Ganesan, K.; Jothi, V.K.; Natarajan, A.; Rajaram, A.; Ravichandran, S.; Ramalingam, S.: Green synthesis of Copper oxide nanoparticles decorated with graphene oxide for anticancer activity and catalytic applications. Arab. J. Chem. 13, 6802–6814 (2020)

    Article  Google Scholar 

  38. Mohan, V.B.; Jayaraman, K.; Bhattacharyya, D.: Brunauer–Emmett–Teller (BET) specific surface area analysis of different graphene materials: a comparison to their structural regularity and electrical properties. Solid State Commun. 320, 114004 (2020)

    Article  Google Scholar 

  39. Janczarek, M.; Kowalska, E.: On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems. Catalysts 7, 317–343 (2017)

    Article  Google Scholar 

  40. Okamoto, K.; Yamamoto, Y.; Tanaka, H.; Tanaka, M.; Itaya, A.: Heterogeneous photocatalytic decomposition of phenol over TiO2 powder Bull. Chem. Soc. Jpn. 58, 2015–2022 (1985)

    Article  Google Scholar 

  41. Meng, X.; Jiang, L.; Wang, W.; Zhang, Z.: Enhanced photocatalytic activity of BiOBr/ZnO heterojunction semiconductors prepared by facile hydrothermal method. Int. J. Photoenergy 2015, 1–9 (2015). https://doi.org/10.1155/2015/747024

    Article  Google Scholar 

  42. Botsa, S.M.; Dharmasoth, R.; Basavaiah, K.: Sonochemical assisted synthesis of CuO for degradation of nitrobenzene undervisible light irradiation and antimicrobial activity. J. Nanosci. Technol. 4, 467–470 (2018)

    Article  Google Scholar 

  43. Julkapli, N.M.; Bagheri, S.: Graphene supported heterogeneous catalysts: an overview. Int. J. Hydrog. Energy 40, 948–979 (2015)

    Article  Google Scholar 

  44. Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J.: P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2010)

    Article  Google Scholar 

  45. Hu, G.; Tang, B.: Photocatalytic mechanism of graphene/titanate nanotubes photocatalyst under visible-light irradiation. Mater. Chem. Phys. 138, 608–614 (2013)

    Article  Google Scholar 

  46. Liou, J.W.; Chang, H.H.: Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch. Immunol. Ther. Exp. 60, 267–275 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Rukhsar Banu, is thankful to University Grants Commission, New Delhi, for the award of Maulana Azad National Fellowship (MANF). The authors are also thankful to SAIF, CIL laboratories (Chandigarh), for providing UV–Vis, FESEM, XRD and FTIR data. We are thankful to SAIF IITM (Chennai) for Raman and PL spectral data, SICART Laboratory (Vallabh Vidyanagar, Anand) for providing TEM data and Microcare Laboratories (Surat) for providing antimicrobial activities data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinki B. Punjabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, R., Salvi, N., Gupta, S. et al. A Facile Synthesis of GO/CuO Nanocomposite with Enhancing Photocatalytic Activity for the Degradation of Azure-B Dye and Its Antimicrobial Behavior. Arab J Sci Eng 47, 365–378 (2022). https://doi.org/10.1007/s13369-021-05421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05421-0

Keywords

Navigation