Skip to main content
Log in

Adsorption of Uranium (VI) onto Natural Algerian Phosphate: Study of Influencing Factors, and Mechanism

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The goal of this study was to use natural phosphate (NP) abundant in Algeria, as an adsorbent for the removal of uranium (VI) from aqueous solutions in batch adsorption. A full 23 factorial extended experimental design was investigated. The factors and levels used during the experiments were; pH (X1) (1–5), initial U(VI) concentration (X2) (30–60 mg L−1) and adsorbent dose (X3) (5–30 g L−1). The properties of NP were characterized by XRF, SEM, EDS, XRD and FTIR before and after adsorption. The effects of factors were explored by response surface methodology. The equilibrium data of U(VI) adsorption onto NP fitted to the Langmuir − 1 model at a maximum monolayer capacity of 11.11 mg g−1 with the kinetics being pseudo-second-order. The characterization of the filtered solid after adsorption revealed the formation of a new lamellar crystal phase of autunite Ca(UO2)2(PO4)2(H2O)6. The calculated value of the mean free energy indicates the chemisorption process. Under optimal conditions, the uranium effluent derived from the precipitation of ammonium uranyl carbonate removal performance of 100% was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anirudhan, T.; Lekshmi, G.; Shainy, F.: Synthesis and characterization of amidoxime modified chitosan/bentonite composite for the adsorptive removal and recovery of uranium from seawater. J. Colloid Interface Sci. 534, 248–261 (2019). https://doi.org/10.1016/j.jcis.2018.09.009

    Article  Google Scholar 

  2. Jokinen, S.A.; Koho, K.; Virtasalo, J.; Jilbert, T.: Depth and intensity of the sulfate-methane transition zone control sedimentary molybdenum and uranium sequestration in a eutrophic low-salinity setting. Appl. Geochem. 122, 104767 (2020). https://doi.org/10.1016/j.apgeochem.2020.104767

    Article  Google Scholar 

  3. Chung, Y.; Yun, Y.-M.; Kim, Y.-J.; Hwang, Y.; Kang, S.: Preparation of alumina-zirconia (Al-Zr) ceramic nanofiltration (NF) membrane for the removal of uranium in aquatic system. Water Supply 19, 789–795 (2019). https://doi.org/10.2166/ws.2018.123

    Article  Google Scholar 

  4. Bjørklund, G.; Semenova, Y.; Pivina, L.; Dadar, M.; Rahman, M.M.; Aaseth, J.; Chirumbolo, S.: Uranium in drinking water: a public health threat. Arch. Toxicol. 94, 1551–1560 (2020). https://doi.org/10.1007/s00204-020-02676-8

    Article  Google Scholar 

  5. Kornilov, A.; Piterkina, E.; Shcherbakova, K.; Makarov, A.; Dmitrieva, O.: Specific features of peroxide precipitation of uranium from acid water–ethanol solutions. Radiochemistry. 62, 173–176 (2020). https://doi.org/10.1134/S1066362220020046

    Article  Google Scholar 

  6. Foster, R.I.; Amphlett, J.T.; Kim, K.-W.; Kerry, T.; Lee, K.; Sharrad, C.A.: SOHIO process legacy waste treatment: uranium recovery using ion exchange. J. Ind. Eng. Chem. 81, 144–152 (2020). https://doi.org/10.1016/j.jiec.2019.09.001

    Article  Google Scholar 

  7. Hoyer, M.; Zabelt, D.; Steudtner, R.; Brendler, V.; Haseneder, R.; Repke, J.-U.: Influence of speciation during membrane treatment of uranium contaminated water. Sep. Purif. Technol. 132, 413–421 (2014). https://doi.org/10.1016/j.seppur.2014.05.044

    Article  Google Scholar 

  8. Yang, X.; Zhang, Z.; Kuang, S.; Wei, H.; Li, Y.; Wu, G.; Geng, A.; Li, Y.; Liao, W.: Removal of thorium and uranium from leach solutions of ion-adsorption rare earth ores by solvent extraction with Cextrant 230. Hydrometallurgy 194, 105343 (2020). https://doi.org/10.1016/j.hydromet.2020.105343

    Article  Google Scholar 

  9. Vakili, M.; Rafatullah, M.; Ibrahim, M.H.; Abdullah, A.Z.; Salamatinia, B.; Gholami, Z.: Oil palm biomass as an adsorbent for heavy metals. Rev. Environ. Contam. Toxicol. 232, 61–88 (2014). https://doi.org/10.1007/978-3-319-06746-9_3

    Article  Google Scholar 

  10. Danish, M.; Hashim, R.; Ibrahim, M.M.; Rafatullah, M.; Sulaiman, O.: Surface characterization and comparative adsorption properties of Cr (VI) on pyrolysed adsorbents of Acacia mangium wood and Phoenix dactylifera L. stone carbon. J. Anal. Appl. Pyrol. 97, 19–28 (2012). https://doi.org/10.1016/j.jaap.2012.06.001

    Article  Google Scholar 

  11. Oyekanmi, A.A.; Ahmad, A.; Hossain, K.; Rafatullah, M.: Adsorption of Rhodamine B dye from aqueous solution onto acid treated banana peel: Response surface methodology, kinetics and isotherm studies. PLoS ONE 14, e0216878 (2019). https://doi.org/10.1371/journal.pone.0216878

    Article  Google Scholar 

  12. Oyekanmi, A.A.; Ahmad, A.; Hossain, K.; Rafatullah, M.: Statistical optimization for adsorption of Rhodamine B dye from aqueous solutions. J. Mol. Liq. 281, 48–58 (2019). https://doi.org/10.1016/j.molliq.2019.02.057

    Article  Google Scholar 

  13. Khan, M.A.; Alqadami, A.A.; Otero, M.; Siddiqui, M.R.; Alothman, Z.A.; Alsohaimi, I.; Rafatullah, M.; Hamedelniel, A.E.: Heteroatom-doped magnetic hydrochar to remove post-transition and transition metals from water: synthesis, characterization, and adsorption studies. Chemosphere 218, 1089–1099 (2019). https://doi.org/10.1016/j.chemosphere.2018.11.210

    Article  Google Scholar 

  14. Nibou, D.; Amokrane, S.: Catalytic performances of exchanged Y faujasites by Ce 3+, La 3+, UO 2 2+, Co 2+, Sr 2+, Pb 2+, Tl+ and NH 4+ cations in toluene dismutation reaction. Comput. Rend. Chim. 13, 527–537 (2010). https://doi.org/10.1016/j.crci.2009.12.006

    Article  Google Scholar 

  15. Alahabadi, A.; Singh, P.; Raizada, P.; Anastopooulos, I.; Sivamani, S.; Dotto, G.L.; Landarani, M.; Ivanets, A.; Kyzas, G.Z.; Hosseini-Bandegharaei, A.: Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid Colloids Surf. Physicochem. Eng. Aspects 607, 125516 (2020). https://doi.org/10.1016/j.colsurfa.2020.125516

    Article  Google Scholar 

  16. Cheira, M.F.; Kouraim, M.N.; Zidan, I.H.; Mohamed, W.S.; Hassanein, T.F.: Adsorption of U (VI) from sulfate solution using montmorillonite/polyamide and nano-titanium oxide/polyamide nanocomposites. J. Environ. Chem. Eng. 8, 104427 (2020). https://doi.org/10.1016/j.jece.2020.104427

    Article  Google Scholar 

  17. Chen, B.; Wang, J.; Kong, L.; Mai, X.; Zheng, N.; Zhong, Q.; Liang, J.; Chen, D.: Adsorption of uranium from uranium mine contaminated water using phosphate rock apatite (PRA): isotherm, kinetic and characterization studies. Colloids Surf. Physicochem. Eng. Aspects 520, 612–621 (2017). https://doi.org/10.1016/j.colsurfa.2017.01.055

    Article  Google Scholar 

  18. Li, Q.; Zhong, H.; Cao, Y.: Effects of the joint application of phosphate rock, ferric nitrate and plant ash on the immobility of As, Pb and Cd in soils. J. Environ. Manag. 265, 110576 (2020). https://doi.org/10.1016/j.jenvman.2020.110576

    Article  Google Scholar 

  19. Yaacoubi, H.; Zidani, O.; Mouflih, M.; Gourai, M.; Sebti, S.: Removal of cadmium from water using natural phosphate as adsorbent. Procedia Eng. 83, 386–393 (2014). https://doi.org/10.1016/j.proeng.2014.09.039

    Article  Google Scholar 

  20. Barka, N.; Assabbane, A.; Nounah, A.; Laanab, L.; Ichou, Y.A.: Removal of textile dyes from aqueous solutions by natural phosphate as a new adsorbent. Desalination 235, 264–275 (2009). https://doi.org/10.1016/j.desal.2008.01.015

    Article  Google Scholar 

  21. Zhou, C.; Wang, X.; Song, X.; Wang, Y.; Fang, D.; Ge, S.; Zhang, R.: Insights into dynamic adsorption of lead by nano-hydroxyapatite prepared with two-stage ultrasound. Chemosphere 253, 126661 (2020). https://doi.org/10.1016/j.chemosphere.2020.126661

    Article  Google Scholar 

  22. Guo, Y.; Gong, Z.; Li, C.; Gao, B.; Li, P.; Wang, X.; Zhang, B.; Li, X.: Efficient removal of uranium (VI) by 3D hierarchical Mg/Fe-LDH supported nanoscale hydroxyapatite: a synthetic experimental and mechanism studies. Chem. Eng. J. 392, 123682 (2020). https://doi.org/10.1016/j.cej.2019.123682

    Article  Google Scholar 

  23. Skwarek, E.; Gładysz-Płaska, A.; Choromańska, J.; Broda, E.: Adsorption of uranium ions on nano-hydroxyapatite and modified by Ca and Ag ions. Adsorption 25, 639–647 (2019). https://doi.org/10.1007/s10450-019-00063-z

    Article  Google Scholar 

  24. Simon, F.G.; Biermann, V.; Peplinski, B.: Uranium removal from groundwater using hydroxyapatite. Appl Geochem. 23, 2137–2145 (2008). https://doi.org/10.1016/j.apgeochem.2008.04.025

    Article  Google Scholar 

  25. Rigali, M.J.; Brady, P.V.; Moore, R.C.: Radionuclide removal by apatite. Am. Miner. 101, 2611–2619 (2016). https://doi.org/10.2138/am-2016-5769

    Article  Google Scholar 

  26. Diwan, V.; Sar, S.K.; Biswas, S.; Lalwani, R.: Adsorptive extraction of uranium (VI) from aqueous phase by dolomite. Groundw. Sustain. Dev. 11, 100424 (2020). https://doi.org/10.1016/j.gsd.2020.100424

    Article  Google Scholar 

  27. Yang, H.; Luo, X.; Ding, H.; Zhang, X.: Adsorption of U (VI) by Elodea nuttallii: equilibrium, kinetic and mechanism analysis. J. Radioanal. Nucl. Chem. 319, 227–235 (2019). https://doi.org/10.1007/s10967-018-6346-7

    Article  Google Scholar 

  28. Elnona, M.; Morci, E.; A. : Sorption of uranium on some natural modified clay mineral deposits. J. Agric. Sci. 27, 2329–2340 (2019). https://doi.org/10.21608/ajs.2019.16794.1084

    Article  Google Scholar 

  29. Hu, W.; Zhang, Z.; Li, M.; Liu, H.; Zhang, C.; Chen, T.; Zhou, Y.: Enhanced uptake capacity for uranium (VI) in aqueous solutions by activated natural siderite: performance and mechanism. Appl. Geochem. 100, 96–103 (2019). https://doi.org/10.1016/j.apgeochem.2018.11.010

    Article  Google Scholar 

  30. Sun, Z.; Chen, D.; Chen, B.; Kong, L.; Su, M.: Enhanced uranium (VI) adsorption by chitosan modified phosphate rock colloids surf. Physicochem. Eng. Aspects 547, 141–147 (2018). https://doi.org/10.1016/j.colsurfa.2018.02.043

    Article  Google Scholar 

Download references

Acknowledgements

My deep and sincere thanks to all authors who contributed directly or indirectly to the realization of this work. Special thanks to all staff of the Nuclear Research Center Draria, Materials Technology Laboratory of Bab Ezzouar and the Department of Civil, Environmental, Land, Building Engineering and Chemistry of Technical University of Bari Italy for their help and benevolence each in his area of expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safir Ouassel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouassel, S., Chegrouche, S., Nibou, D. et al. Adsorption of Uranium (VI) onto Natural Algerian Phosphate: Study of Influencing Factors, and Mechanism. Arab J Sci Eng 46, 6645–6661 (2021). https://doi.org/10.1007/s13369-020-05299-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05299-4

Keywords

Navigation