Skip to main content

Advertisement

Log in

A Review on Fuel Cell-Based Locomotive Powering Options for Sustainable Transportation

  • Review Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Conventional locomotives employing diesel-based propulsion systems have raised concerns about the environment and hence sustainable development due to their emissions. To obtain an environmentally benign railway system, fuel cell-based locomotives are considered promising candidates owing to their high efficiencies as well as environmental performance. In the present study, a review of the development of fuel cell-based locomotives is conducted and their current progress is described. Further, investigations conducted on various aspects of these types of locomotives are discussed. The literature studies were found to be focused on four main areas namely (1) prototype design/analysis, (2) energy management, (3) feasibility and economic assessment and (4) environmental performance. Fuel cell-based hybrid locomotives entail the potential to reduce the environmental emissions considerably with similar investment costs as diesel fuel-based locomotives. Nearly 3318 tonnes/year of \(\hbox {CO}_{2}\) emissions may be reduced by replacing diesel engine locomotives with fuel cell trains. Approximately 98% of \(\hbox {NO}_{\mathrm{x}}\) emissions are estimated to be reduced with the utilization of hybrid fuel cell locomotives. Moreover, several control systems utilizing fuzzy logic control strategy have been proved to be efficient energy management aids for such locomotives. Overall locomotive efficiencies of 50.9% are achievable with the deployment of such control strategies that effectively manage the power demands between the fuel cells, batteries and supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFC:

Alkaline fuel cell

\(\hbox {CO}_{2}\) :

Carbon dioxide

CuCl:

Copper chlorine

DC:

Direct current

GHG:

Greenhouse gas emissions

HX:

Heat exchanger

SOFC:

Solid oxide fuel cell

MCFC:

Molten carbonate fuel cell

PAFC:

Phosphoric acid fuel cell

PEM:

Proton exchange membrane

PM:

Particulate matter

PSO:

Particle swarm optimization

\(\hbox {NO}_{\mathrm{x}}\) :

Nitrogen oxides

ROG:

Reactive organic compounds

\(\hbox {SO}_{\mathrm{x}}\) :

Sulphur oxides

TOG:

Total organic compounds

wt:

Weight

References

  1. International Energy Agency (IEA) World Energy Balances (2015). https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf. Accessed 1 June 2018

  2. Transport, Energy and CO2. IEA. https://www.iea.org/publications/freepublications/publication/transport2009.pdf. Accessed 1 June 2018

  3. Worldbank, Fossil fuel energy consumption (% of total) \({\vert }\) Data (2014). http://data.worldbank.org/indicator/EG.USE.COMM.FO.ZS. Accessed 24 Mar 2017

  4. Transportation electrification. Hydro Quebec. http://www.hydroquebec.com/transportation-electrification/. Accessed 1 June 2018

  5. Scott, D.S.; Rogner, H.; Scott, M.B.: Fuel cell locomotives in Canada. Int. J. Hydrog. Energy 18(3), 253–263 (1993)

    Article  Google Scholar 

  6. Moghbelli, H.; Gao, Y.; Langari, R.; Ehsani, M.: Investigation of hybrid fuel cell technology applications on the future passenger railroad transportation. In: Proceedings of the 2003 IEEE/ASME Joint Rail Conference, pp. 39–53 (2003)

  7. Zavada, J.; Zavada, J.B.; Plesa, T.: Hybrid propulsion of railway vehicles. In: Proceedings of 16th International Scientific-Technical Trans & AutoMoto Conference, pp. 11–14 (2009)

  8. Miller, A.R.; Hess, K.S.; Barnes, D.L.; Erickson, T.L.: System design of a large fuel cell hybrid locomotive. J. Power Sources 173, 935–942 (2007)

    Article  Google Scholar 

  9. US Department of Energy, Comparison of fuel cell technologies. https://www.energy.gov/eere/fuelcells/comparison-fuel-cell-technologies. Accessed 1 June 2018

  10. Carrette, L.S.U.; Friedrich, K.A.: Fuel cells–fundamentals and applications. Fuel Cells 1, 5–39 (2001)

    Article  Google Scholar 

  11. Prater, K.B.: Solid polymer fuel cells for transport and stationary applications. J. Power Sources 61, 105–109 (1996)

    Article  Google Scholar 

  12. Kordesch, K.V.S.G.: Fuel Cells and Their Applications. Wiley, Hoboken (1996)

    Book  Google Scholar 

  13. Sopian, K.W.D.W.: Challenges and future developments in proton exchange membrane fuel cells. Renew. Energy 31, 719–27 (2006)

    Article  Google Scholar 

  14. Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011)

    Article  Google Scholar 

  15. Kordesch, K.; Hacker, V.; Gsellmann, J.; Cifrain, M.; Faleschini, G.; Enzinger, P.; Fankhauser, R.; Ortner, M.; Muhr, M.; Aronson, R.R.: Alkaline fuel cells applications. J. Power Sources 86, 162–165 (2000)

    Article  Google Scholar 

  16. Bidault, F.; Brett, D.J.L.; Middleton, P.H.; Brandon, N.P.: Review of gas diffusion cathodes for alkaline fuel cells. J. Power Sources 187, 39–48 (2009)

    Article  Google Scholar 

  17. Nijmeijer, K.; Merle, G.; Wessling, M.: Anion exchange membranes for alkaline fuel cells: a review. J. Membr. Sci. 377, 1–35 (2011)

    Article  Google Scholar 

  18. Gottesfeld, S.: Anion exchange membrane fuel cells: current status and remaining challenges. J. Power Sources 375, 170–184 (2018)

    Article  Google Scholar 

  19. Wang, Y.; Qiao, J.; Baker, R.; Zhang, J.: Alkaline polymer electrolyte membranes for fuel cell applications. Chem. Soc. Rev. 42, 5768–5787 (2013)

    Article  Google Scholar 

  20. Varcoe, J.R.: Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5(2), 187–200 (2005)

    Article  Google Scholar 

  21. AFC Energy (2018). https://www.afcenergy.com/. Accessed 1 June 2018

  22. Badwal, S.; Ciacchi, F.: Oxygen-ion conducting electrolyte materials for solid oxide fuel cells. Ionics 6, 1–21 (2000)

    Article  Google Scholar 

  23. Boldrin, P.; Ruiz-Trejo, E.; Mermelstein, J.; Bermúdez, J.M.; Reina, T.R.; Brandon, N.P.: Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem. Rev. 116, 13633 (2016)

    Article  Google Scholar 

  24. Brodnikovskii, E.M.: Solid oxide fuel cell anode materials. Powder Metall. Met. Ceram. 54, 166–174 (2015)

    Article  Google Scholar 

  25. da Silva, F.S.; de Souza, T.M.: Novel materials for solid oxide fuel cell technologies: a literature review. Int. J. Hydrog. Energy 42, 26020–26036 (2017)

    Article  Google Scholar 

  26. Gao, Z.; Mogni, L.V.; Miller, E.C.; Railsback, J.G.; Barnett, S.A.: A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 162–1644 (2016)

    Google Scholar 

  27. Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K.: Progress in material selection for solid oxide fuel cell technology: a review. Progr. Mater. Sci. 72, 141–337 (2015)

    Article  Google Scholar 

  28. Minh, N.: Ceramic fuel-cells. J. Am. Ceram. Soc. 76, 563–588 (1993)

    Article  Google Scholar 

  29. Saravanan, R.: Solid Oxide Fuel Cell (SOFC) Materials. Materials Research Forum LLC., Millersville (2018)

    Google Scholar 

  30. Singhal, S.; Kendall, K.: High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier, Amsterdam (2003)

    Google Scholar 

  31. Weber, A.; Ivers-Tiffee, E.: Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. J. Power Sources 127, 273–283 (2004)

    Article  Google Scholar 

  32. Zhang, Y.; Knibbe, R.; Sunarso, J.; Zhong, Y.; Zhou, W.; Shao, Z.; Zhu, Z.: Solid-oxide fuel cells: recent progress on advanced materials for solid-oxide fuel cells operating below \(500\, ^{\circ }\text{C}\) (Adv. Mater. 48/2017). Adv. Mater. 29(48) (2017). https://doi.org/10.1002/adma.201770345

  33. Veyo, S.: The westinghouse solid oxide fuel cell program—a status report. In: LECEC 96-Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, pp. 1138–1143 (1996)

  34. Ideris, A.; Croiset, E.; Pritzker, M.; Amin, A.: Direct-methane solid oxide fuel cell (SOFC) with Ni-SDC anode-supported cell. Int. J. Hydrog. Energy 42(36), 23118–23129 (2017)

    Article  Google Scholar 

  35. Ding, H.; Tao, Z.; Liu, S.; Yang, Y.: A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6-\(\updelta \) double perovskite as anode material. J. Power Sources 327, 573–579 (2016)

    Article  Google Scholar 

  36. Li, P.; Li, J.; Li, Y.; Yu, B.; Yao, X.; Zhao, Y.: Improved activity and stability of Ni–Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol through addition of molybdenum. J. Power Sources 320, 251–256 (2016)

    Article  Google Scholar 

  37. Elleuch, A.; Halouani, K.; Li, Y.: Bio-methanol fueled intermediate temperature solid oxide fuel cell: A future solution as component in auxiliary power unit for eco-transportation. Mater. Des. 97, 331–340 (2016)

    Article  Google Scholar 

  38. Li, P.; Li, J.; Li, Y.; Yu, X.; Yao, B.; Zhao, Y.: A single layer solid oxide fuel cell composed of La2NiO4 and doped ceria-carbonate with H2 and methanol as fuels. Int. J. Hydrog. Energy 41(21), 9059–9065 (2016)

    Article  Google Scholar 

  39. Qu, J.; Wang, W.; Chen, Y.; Deng, X.; Shao, Z.: Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures. Appl. Energy 164, 563–571 (2015)

    Article  Google Scholar 

  40. Li, Y.; Wong, L.M.; Xie, H.; Wang, S.; Su, P.: Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte. J. Power Sources 340, 98–103 (2016)

    Article  Google Scholar 

  41. Tippawan, A.; Arpornwichanop, P.; Dincer, I.: Energy and exergy analyses of an ethanol-fueled solid oxide fuel cell for a trigeneration system. Energy 87, 228–239 (2015)

    Article  Google Scholar 

  42. Steil, M.C.; Nobrega, S.D.; Georges, S.; Gelin, P.; Uhlenbruck, S.; Fonseca, F.C.: Durable direct ethanol anode-supported solid oxide fuel cell. Appl. Energy 199, 180–186 (2017)

    Article  Google Scholar 

  43. Yang, J.; Molouk, A.F.S.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K.: A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells. ACS Appl. Mater. Interfaces 7(51), 28701 (2015)

    Article  Google Scholar 

  44. Siddiqui, O.; Dincer, I.: Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle. J. Power Sources 370, 138–154 (2017)

    Article  Google Scholar 

  45. Cinti, G.; Discepoli, G.; Sisani, E.; Desideri, U.: SOFC operating with ammonia: stack test and system analysis. Int. J. Hydrog. Energy 41(31), 13583–13590 (2016)

    Article  Google Scholar 

  46. Alnegren, P.; Grolig, J.G.; Ekberg, J.; Göransson, G.; Svensson, J.E.: Metallic bipolar plates for high temperature polymer electrolyte membrane fuel cells. Fuel Cells 16(1), 39–45 (2016)

    Article  Google Scholar 

  47. Kakati, B.K.; Sathiyamoorthy, D.; Verma, A.: Electrochemical and mechanical behavior of carbon composite bipolar plate for fuel cell. Int. J. Hydrog. Energy 35(9), 4185–4194 (2010)

    Article  Google Scholar 

  48. Weissbecker, K.; Wippermann, V.; Lehnert, W.: Electrochemical corrosion study of metallic materials in phosphoric acid as bipolar plates for HT-PEFCs. J. Electrochem. Soc. 161(14), F1437–F1447 (2014)

    Article  Google Scholar 

  49. Bevilacqua, N.; George, M.G.; Galbiati, S.; Bazylak, A.; Zeis, R.: Phosphoric acid invasion in high temperature PEM fuel cell gas diffusion layers. Electrochem. Acta 257, 89–98 (2017)

    Article  Google Scholar 

  50. Lee, D.; Lee, D.G.: Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs). J. Power Sources 327, 119–126 (2016)

    Article  Google Scholar 

  51. United Technologies Corp. www.utc.com. Accessed 1 June 2018

  52. Brenscheidt, T.; Janowitz, K.; Salge, H.; Wendt, H.; Brammer, F.: Performance of ONSI PC25 PAFC cogeneration plant. Int. J. Hydrog. Energy 23(1), 53–56 (1998)

    Article  Google Scholar 

  53. Hojo, N.; Okuda, M.; Nakamura, M.: Phosphoric acid fuel cells in Japan. J. Power Sources 61(1–2), 73–77 (1996)

    Article  Google Scholar 

  54. Miyake, Y.; Akiyama, Y.; Hamada, A.; Itoh, Y.; Oda, K.; Sumi, S.: Status of fuel cells R and D activities at Sanyo. J. Power Sources 61, 155–160 (1996)

    Article  Google Scholar 

  55. Hu, Y.; Jiang, Y.; Jensen, J.O.; Cleemann, L.N.; Li, Q.: Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures. J. Power Sources 375, 77–81 (2018)

    Article  Google Scholar 

  56. Chen, X.; Wang, Y.; Zhao, Y.; Zhou, Y.: A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system. Energy 101, 359–365 (2016)

    Article  Google Scholar 

  57. Ito, H.: Economic and environmental assessment of phosphoric acid fuel cell-based combined heat and power system for an apartment complex. Int. J. Hydrog. Energy 42(23), 15449–15463 (2017)

    Article  Google Scholar 

  58. Wang, H.; Chang, C.; Huang, Y.; Su, Y.; Tseng, F.: A high-yield and ultra-low-temperature methanol reformer integratable with phosphoric acid fuel cell (PAFC). Energy 133, 1142–1152 (2017)

    Article  Google Scholar 

  59. Wu, M.; Zhang, H.; Zhao, J.; Wang, F.; Yuan, J.: Performance analyzes of an integrated phosphoric acid fuel cell and thermoelectric device system for power and cooling cogeneration. Int. J. Refrig. 89, 61–69 (2018)

    Article  Google Scholar 

  60. Fuel cell & Hydrogen Energy Association. http://www.fchea.org. Accessed 1 June 2018

  61. Shipboard testing now under way for FellowSHIP project. Fuel Cells Bulletin, no. 11 (2009)

  62. Baron, R.; Wejrzanowski, T.; Szabłowski, Ł.; Szczęśniak, A.; Milewski, J.; Fung, K.: Dual ionic conductive membrane for molten carbonate fuel cell. Int. J. Hydrog. Energy 43(16), 8100–8104 (2018)

    Article  Google Scholar 

  63. Jienkulsawad, P.; Saebea, D.; Patcharavorachot, Y.; Kheawhom, S.; Arpornwichanop, A.: Analysis of a solid oxide fuel cell and a molten carbonate fuel cell integrated system with different configurations. Int. J. Hydrog. Energy 43(2), 932–942 (2018)

    Article  Google Scholar 

  64. Czelej, K.; Cwieka, K.; Colmenares, J.C.; Kurzydlowski, K.J.: Catalytic activity of NiO cathode in molten carbonate fuel cells. Appl. Catal. B Environ. 222, 73–75 (2018)

    Article  Google Scholar 

  65. De Lorenzo, G.; Milewski, J.; Fragiacomo, P.: Theoretical and experimental investigation of syngas-fueled molten carbonate fuel cell for assessment of its performance. Int. J. Hydrog. Energy 42(48), 28816–28828 (2017)

    Article  Google Scholar 

  66. Milewski, J.; Futyma, K.; Szczęśniak, A.: Molten carbonate fuel cell operation under high concentrations of SO2 on the cathode side. Int. J. Hydrog. Energy 41(41), 18769–18777 (2016)

    Article  Google Scholar 

  67. Fuel cell mine locomotive passes initial tests. Fuel Cells Bull. 2002(10), 5–6 (2002)

  68. Consortium to develop fuel cell locomotive. Fuel Cells Bull. 2003(10), 2 (2003)

  69. Design milestone for fuel cell locomotive. Fuel Cells Bull. 2004(4), 6 (2004)

  70. Contract to develop fuel cell power for rail vehicle. Fuel Cells Bull. (11), 7 (2005)

  71. Japanese train company to test world’s first fuel cell passenger train. Fuel Cells Bull. (6), 4 (2006)

  72. BNSF, Vehicle Projects demonstrate fuel cell switch locomotive I. Fuel Cells Bull. (8), 4 (2009)

  73. US–SA partnership to produce five fuel cell mine locomotives. Fuel Cells Bull. (2), 4 (2012)

  74. Anglo American fuel cell mine locomotive in South Africa. Fuel Cells Bull. (6), 12 (2012)

  75. Ballard signs Chinese deal to develop fuel cell modules for trams. Fuel Cells Bull. (7), 4–5 (2015)

  76. Latvian Railways plan locomotives powered with Ballard fuel cells. Fuel Cells Bull. (9), 6 (2016)

  77. Alstom unveils Coradia iLint hydrogen fuel cell powered train for European regional market. Fuel Cells Bulle. 9, 1 (2016)

  78. Indian Railways in project to develop fuel cell powered train. Fuel Cells Bull. (3), 4–5 (2018)

  79. Hoffrichter, A.; Fisher, P.; Tutcher, J.; Hillmansen, S.; Roberts, C.: Performance evaluation of the hydrogen-powered prototype locomotive ‘Hydrogen Pioneer’. J. Power Sources 250, 120–127 (2014)

    Article  Google Scholar 

  80. Peng, F.; Chen, W.; Liu, Z.; Li, Q.; Dai, C.: System integration of China ’ s first proton exchange membrane fuel cell locomotive. Int. J. Hydrog. Energy 39, 13886–13893 (2014)

    Article  Google Scholar 

  81. Fernandez, L.M.; Garcia, P.; Garcia, C.A.; Torreglosa, J.P.; Jurado, F.: Comparison of control schemes for a fuel cell hybrid tramway integrating two dc/dc converters. Int. J. Hydrog. Energy 35(11), 5731–5744 (2010)

    Article  Google Scholar 

  82. Fernandez, L.M.; Garcia, P.; Andrés, C.; Jurado, F.: Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway. Energy Convers. Manag. 52(5), 2183–2192 (2011)

    Article  Google Scholar 

  83. Guo, L.; Yedavalli, K.; Zinger, D.: Design and modeling of power system for a fuel cell hybrid switcher locomotive. Energy Convers. Manag. 52(2), 1406–1413 (2011)

    Article  Google Scholar 

  84. Torreglosa, J.P.; Jurado, F.; Garcı, P.; Ferna’ndez, L.M.: Application of cascade and fuzzy logic based control in a model of a fuel-cell hybrid tramway. Eng. Appl. Artif. Intell. 24, 1–11 (2011)

    Article  Google Scholar 

  85. Torreglosa, J.P.; Jurado, F.; Garcı’a, P.; Ferna’ndez, L.M.: Hybrid fuel cell and battery tramway control based on an equivalent consumption minimization strategy. Control Eng. Pract. 19, 1182–1194 (2011)

    Article  Google Scholar 

  86. Li, Q.; Chen, W.; Liu, Z.; Li, M.; Ma, L.: Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway. J. Power Sources 279, 267–280 (2015)

    Article  Google Scholar 

  87. Li, Q.; Yang, H.; Han, Y.; Li, M.; Chen, W.: A state machine strategy based on droop control for an energy management system of PEMFC-battery- supercapacitor hybrid tramway. Int. J. Hydrog. Energy 41, 16148–16159 (2016)

    Article  Google Scholar 

  88. Zhang, G.; Chen, W.; Li, Q.: Modeling, optimization and control of a FC/battery hybrid locomotive based on ADVISOR. Int. J. Hydrog. Energy 42, 18568–18583 (2017)

    Article  Google Scholar 

  89. Hong, Z.; Li, Q.; Han, Y.; Shang, W.; Zhu, Y.; Chen, W.: An energy management strategy based on dynamic power factor for fuel cell/battery hybrid locomotive. Int. J. Hydrog. Energy 43, 3261–3272 (2018)

    Article  Google Scholar 

  90. Fragiacomo, P.; Francesco, P.: Energy performance of a fuel cell hybrid system for rail vehicle propulsion. In: September 2017, Lecce, Italy 72nd Conference of the Italian Thermal Machines Engineering Association, vol. 126, pp. 1051–1058 (2017)

  91. Zhang, W.: Comparison of daily operation strategies for a fuel cell/battery tram. Int. J. Hydrog. Energy 42, 18532–18539 (2017)

    Article  Google Scholar 

  92. Li, Q.; Chen, W.; Liu, Z.; Guo, A.; Huang, J.: Nonlinear multivariable modeling of locomotive proton exchange membrane fuel cell system. Int. J. Hydrog. Energy 39, 13777–13786 (2014)

    Article  Google Scholar 

  93. Miller, A.R.; Peters, J.; Smith, B.E.; Velev, O.A.: Analysis of fuel cell hybrid locomotives. J. Power Sources 157, 855–861 (2006)

    Article  Google Scholar 

  94. Schroeder, D.J.; Majumdar, P.: Feasibility analysis for solid oxide fuel cells as a power source for railroad road locomotives. Int. J. Hydrog. Energy 35(20), 11308–11314 (2010)

    Article  Google Scholar 

  95. Martinez, A.S.; Brouwer, J.; Samuelsen, G.S.: Feasibility study for SOFC-GT hybrid locomotive power: Part I. Development of a dynamic 3.5 MW SOFC-GT FORTRAN model. J. Power Sources, 213(x), 203–217 (2012)

  96. Martinez, A.S.; Brouwer, J.; Samuelsen, G.S.: Feasibility study for SOFC-GT hybrid locomotive power part II System packaging and operating route simulation. J. Power Sources 213(X), 358–374 (2012)

    Article  Google Scholar 

  97. Zhang, W.: Comparison study on life-cycle costs of different trams powered by fuel cell systems and others. Int. J. Hydrog. Energy 41, 16577–16591 (2016)

    Article  Google Scholar 

  98. Haseli, Y.; Naterer, G.F.; Dincer, I.Ã.: Comparative assessment of greenhouse gas mitigation of hydrogen passenger trains. Int. J. Hydrog. Energy 33, 1788–1796 (2008)

    Article  Google Scholar 

  99. Meegahawatte, D.; Hillmansen, S.; Roberts, C.; Falco, M.; Mcgordon, A.; Jennings, P.: Analysis of a fuel cell hybrid commuter railway vehicle. J. Power Sources 195(23), 7829–7837 (2010)

    Article  Google Scholar 

  100. Marin, G.D.; Naterer, G.F.; Gabriel, K.: Rail transportation by hydrogen versus electrification—Case study for Ontario Canada, I : propulsion and storage. Int. J. Hydrog. Energy 35, 6084–6096 (2010)

    Article  Google Scholar 

  101. Martinez, A.S.; Brouwer, J.; Samuelsen, G.S.: Comparative analysis of SOFC-GT freight locomotive fueled by natural gas and diesel with onboard reformation. Appl. Energy 148, 421–438 (2015)

    Article  Google Scholar 

  102. Ortech Environmental, Air Quality Assessment Report for GO Transit Georgetown, Mississauga (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamah Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, O., Dincer, I. A Review on Fuel Cell-Based Locomotive Powering Options for Sustainable Transportation. Arab J Sci Eng 44, 677–693 (2019). https://doi.org/10.1007/s13369-018-3607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3607-2

Keywords

Navigation