Skip to main content
Log in

Effects of Elevated Temperatures on Residual Properties of Concrete Reinforced with Waste Polypropylene Carpet Fibres

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the effect of waste polypropylene carpet fibres and palm oil fuel ash (POFA) on the mechanical and microstructural properties of concrete exposed to elevated temperatures was investigated. Concrete samples were exposed to high temperatures up to \(800\,{^{\circ}}\hbox {C}\) then cooled to ambient temperature before tests. Four mixes containing carpet fibres (0 and 0.5%) and POFA (0 and 20%) were prepared. Mass loss, residual ultrasonic pulse velocity, compressive strength, scanning electron microscopy, X-ray diffraction and differential thermal analysis were performed to investigate the effects of carpet fibres and POFA on the performance of the concrete at elevated temperatures. The results showed that both carpet fibres and POFA were associated with a significant enhancement in the fire resistance and residual compressive strength and also eliminating the explosive spalling behaviour of the concrete at elevated temperatures. Furthermore, the role of carpet fibres and POFA is discussed through the microstructural analysis and fibre–matrix interactions as function of heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awal, A.S.M.A.; Mohammadhosseini, H.; Hossain, M.Z.: Strength, modulus of elasticity and shrinkage behaviour of concrete containing waste carpet fiber. Int. J. Geomate 9(1), 1441–1446 (2015)

    Google Scholar 

  2. Abbas, Y.M.; Khan, M.I.: Fiber-matrix interactions in fiber-reinforced concrete: a review. Arab. J. Sci. Eng. 41(4), 1183–1198 (2016)

    Article  Google Scholar 

  3. Ramadevi, K.; Babu, D.V.; Venkatasubramani, R.: Behaviour of hybrid fibre-reinforced concrete frames with infills against lateral reversed loads. Arab. J. Sci. Eng. 39(10), 6959–6967 (2014)

    Article  Google Scholar 

  4. Noumowe, A.; Clastres, P.; Debicki, G.; Bolvin, M.: High temperature effect on high performance concrete (70–600 \(^{\circ}\text{C}\)) strength and porosity. In: Malhotra, V.M. (ed.) Third CANMET/ACI International Conference on Durability of Concrete, Nice, France (1994)

  5. Kalifa, P.; Chene, G.; Galle, C.: High-temperature behaviour of HPC with polypropylene fibres: from spalling to microstructure. Cem. Concrete Res. 31(10), 1487–1499 (2001)

    Article  Google Scholar 

  6. Ezziane, M.; Kadri, T.; Molez, L.; Jauberthie, R.; Belhacen, A.: High temperature behaviour of polypropylene fibres reinforced mortars. Fire Saf. J. 71, 324–331 (2015)

    Article  Google Scholar 

  7. Rambo, D.A.S.; de Andrade Silva, F.; Toledo Filho, R.D.; Ukrainczyk, N.; Koenders, E.: Tensile strength of a calcium–aluminate cementitious composite reinforced with basalt textile in a high-temperature environment. Cem. Concrete Compos. 70, 183–193 (2016)

    Article  Google Scholar 

  8. Husem, M.: The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Saf. J. 41(2), 155–163 (2006)

    Article  Google Scholar 

  9. Silva, F.; Butler, M.; Hempel, S.; Toledo Filho, R.; Mechtcherine, V.: Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete. Cem. Concrete Compos. 48, 26–34 (2014)

    Article  Google Scholar 

  10. Hassanpour, M.; Shafigh, P.; Mahmud, H.B.: Mechanical properties of structural lightweight aggregate concrete containing low volume steel fiber. Arab. J. Sci. Eng. 39(5), 3579–3590 (2014)

    Article  Google Scholar 

  11. Gencel, O.: Effect of elevated temperatures on mechanical properties of high-strength concrete containing varying proportions of hematite. Fire Mater. 36(3), 217–230 (2012)

    Article  Google Scholar 

  12. Qadi, A.L.; Arabi, N.S.; Mustapha, B.; Nasharuddin, K.; Naganathan, S.; AL-Kadi, Q.N.: Effect of polypropylene fibers on thermogravimetric properties of self-compacting concrete at elevated temperatures. Fire Mater. 37(3), 177–186 (2013)

    Article  Google Scholar 

  13. Sotayo, A.; Green, S.; Turvey, G.: Carpet recycling: a review of recycled carpets for structural composites. Environ. Technol. Innov. 3, 97–107 (2015)

    Article  Google Scholar 

  14. Mohammadhosseini, H.; Awal, A.S.M.A.: Physical and mechanical properties of concrete containing fibers from industrial carpet waste. Int. J. Res. Eng. Technol. 2(12), 464–468 (2013)

    Article  Google Scholar 

  15. Awal, A.S.M.A.; Mohammadhosseini, H.: Green concrete production incorporating waste carpet fiber and palm oil fuel ash. J. Clean. Prod. 137, 157–166 (2016)

    Article  Google Scholar 

  16. Mohammadhosseini, H.; Awal, A.S.M.A.; Sam, A.R.M.: Mechanical and thermal properties of prepacked aggregate concrete incorporating palm oil fuel ash. Sādhanā 41(10), 1235–1244 (2016)

    Google Scholar 

  17. Poon, C.; Shui, Z.; Lam, L.: Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cem. Concrete Res. 34(12), 2215–2222 (2004)

    Article  Google Scholar 

  18. Şahmaran, M.; Özbay, E.; Yücel, H.; Lachemi, M.; Li, V.: Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures. J. Mater. Civ. Eng. 23(12), 1735–1745 (2011)

    Article  Google Scholar 

  19. Awal, A.S.M.A.; Shehu, I.; Ismail, M.: Effect of cooling regime on the residual performance of high-volume palm oil fuel ash concrete exposed to high temperatures. Constr. Build. Mater. 98, 875–883 (2015)

    Article  Google Scholar 

  20. Khankhaje, E.; Hussin, M.W.; Mirza, J.; Rafieizonooz, M.; Salim, M.; Siong, H.; Warid, M.: On blended cement and geopolymer concretes containing palm oil fuel ash. Mater. Des. 89, 385–398 (2016)

    Article  Google Scholar 

  21. Mohammadhosseini, H.; Awal, A.S.M.A.; Ehsan, A.H.: Influence of palm oil fuel ash on fresh and mechanical properties of self-compacting concrete. Sadhana 40(6), 1989–1999 (2015)

    Article  Google Scholar 

  22. Bingöl, A.F.; Gül, R.: Effect of elevated temperatures and cooling regimes on normal strength concrete. Fire Mater. 33(2), 79–88 (2009)

    Article  Google Scholar 

  23. Ateş, E.; Barnes, S.: The effect of elevated temperature curing treatment on the compression strength of composites with polyester resin matrix and quartz filler. Mater. Des. 34, 435–443 (2012)

    Article  Google Scholar 

  24. Behnood, A.; Ghandehari, M.: Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Saf. J. 44(8), 1015–1022 (2009)

    Article  Google Scholar 

  25. Mohammadhosseini, H.; Awal, A.S.M.A.; Yatim, J.M.: The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibres. Constr. Build. Mater. 143, 147–157 (2017)

    Article  Google Scholar 

  26. Rashad, A.: An investigation of high-volume fly ash concrete blended with slag subjected to elevated temperatures. J. Clean. Prod. 93, 47–55 (2015)

    Article  Google Scholar 

  27. Xiao, J.; Falkner, H.: On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire Saf. J. 41(2), 115–121 (2006)

    Article  Google Scholar 

  28. Noumowe, A.: Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to \(200\,^{\circ}\text{C}\). Cem. Concrete Res. 35(11), 2192–2198 (2005)

    Article  Google Scholar 

  29. Bonakdar, A.; Babbitt, F.; Mobasher, B.: Physical and mechanical characterization of fiber-reinforced aerated concrete (FRAC). Cem. Concrete Compos. 38, 82–91 (2013)

    Article  Google Scholar 

  30. Sancak, E.; Sari, Y.; Simsek, O.: Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer. Cem. Concrete Compos. 30(8), 715–721 (2008)

    Article  Google Scholar 

  31. Sideris, K.; Manita, P.: Residual mechanical characteristics and spalling resistance of fiber reinforced self-compacting concretes exposed to elevated temperatures. Constr. Build. Mater. 41, 296–302 (2013)

    Article  Google Scholar 

  32. Fares, H.; Toutanji, H.; Pierce, K.; Noumowé, A.: Lightweight self-consolidating concrete exposed to elevated temperatures. J. Mater. Civ. Eng. 27(12), 1–10 (2015)

    Article  Google Scholar 

  33. Düğenci, O.; Haktanir, T.; Altun, F.: Experimental research for the effect of high temperature on the mechanical properties of steel fiber-reinforced concrete. Constr. Build. Mater. 75, 82–88 (2015)

    Article  Google Scholar 

  34. Ma, Q.; Guo, R.; Zhao, Z.; Lin, Z.; He, K.: Mechanical properties of concrete at high temperature: a review. Constr. Build. Mater. 93, 371–383 (2015)

    Article  Google Scholar 

  35. Neville, A.M.: Properties of Concrete, 4th edn. Longman Group Ltd., London (1995)

    Google Scholar 

  36. Zheng, W.; Li, H.; Wang, Y.: Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature. Mater. Des. 41, 403–409 (2012)

    Article  Google Scholar 

  37. Suhaendi, S.; Horiguchi, T.: Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition. Cem. Concrete Res. 36(9), 1672–1678 (2006)

    Article  Google Scholar 

  38. Sun, Z.; Xu, Q.: Micromechanical analysis of polyacrylamide-modified concrete for improving strengths. Mater. Sci. Eng. A 490(1), 181–192 (2008)

    Article  Google Scholar 

  39. Noumowé, A.; Siddique, R.; Ranc, G.: Thermo-mechanical characteristics of concrete at elevated temperatures up to \(310\,^{\circ}\text{C}\). Nucl. Eng. Des. 239(3), 470–476 (2009)

    Article  Google Scholar 

  40. Fares, H.; Remond, S.; Noumowe, A.; Cousture, A.: High temperature behaviour of self-consolidating concrete: microstructure and physicochemical properties. Cem. Concrete Res. 40(3), 488–496 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mohammadhosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadhosseini, H., Lim, N.H.A.S., Sam, A.R.M. et al. Effects of Elevated Temperatures on Residual Properties of Concrete Reinforced with Waste Polypropylene Carpet Fibres. Arab J Sci Eng 43, 1673–1686 (2018). https://doi.org/10.1007/s13369-017-2681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2681-1

Keywords

Navigation