Skip to main content

Advertisement

Log in

Synthesis, Characterization, Electrical and Photocatalytic Studies of Polyacrylamide Zr(IV) Phosphosulphosalicylate, a Cation Exchanger: Its Application in the Removal of Hg (II) from Aqueous Solution

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, we synthesized successfully a new organic–inorganic material, polyacrylamide Zr(IV) phosphosulphosalicylate (PAAZPSS) by simple sol–gel method and converted in a cation exchanger and then applied as an adsorbent for the removal of Hg (II) from aqueous solution. In order to confirm the desired synthesis, the prepared material was characterized by many sophisticated techniques such as FTIR, SEM and XRD. The ion exchange adsorbent exhibits good ion exchange capacity (IEC) for alkali metal ion (\(\hbox {K}^{+})\). Selective studies of this ion exchange adsorbent for different metal ions were performed, and on the basis of \({K}_{\mathrm{d}}\) values PAAZPSS was more selective for Hg (II). The sorption experiment for the Hg (II) removal was performed using batch method. The adsorption process followed Langmuir adsorption isotherm and pseudo-second-order kinetic model. The thermodynamic parameters revealed the feasibility, spontaneity, endothermic nature of the PAAZPSS-Hg (II) system. The material showed high value of dielectric constant, dielectric loss at low-frequency region and enhanced AC conductivity at low-frequency region so it can be used in energy storage devices. The material also showed good photocatalytic degradation of rhodamine B and crystal violet dyes. So it may be concluded that polyacrylamide Zr(IV) phosphosulphosalicylate can be employed not only for the treatment of inorganic metal ion and photocatalytic degradation of organic dyes but also in electrical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen, X.; Wang, Q.; Chen, W.; Pang, Y.: Appl. Surf. Sci. 317, 1028 (2014). doi:10.1016/j.apsusc.2014.09.033

  2. Cui, L.; Guo, X.; Wei, Q.; Wang, Y.; Gao, L.; Yan, L.; Yan, T.; Du, B.: J. Colloid Interf. Sci. 439, 112 (2015). doi:10.1016/j.jcis.2014.10.019

  3. Chena, M.; Qin, X.; Zeng, G.; Li, J.: Impacts of human activity modes and climate on heavy metal “spread” in groundwater are biased. J. Chemos. 152, 439–445 (2016)

    Article  Google Scholar 

  4. Krishnani, K.K.; Meng, X.; Dupont, L.: Metal ions binding onto lignocellulosic biosorbent. J. Environ. Sci. Health A 44, 688 (2009). doi:10.1080/10934520902847810

    Article  Google Scholar 

  5. De, M.; Azargohar, R.; Dalai, A.K.; Shewchuk, S.R.: Mercury removal by bio-char based modified activated carbons. Fuel 103, 570 (2013). doi:10.1016/j.fuel.2012.08.011

    Article  Google Scholar 

  6. Rao, M.M.; Reddy, D.H.K.K.; Venkateswarlu, P.; Seshaiah, K.: Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. J. Env. Manag. 90, 634 (2009). doi:10.1016/j.jenvman.2007.12.019

    Article  Google Scholar 

  7. Lu, X.; Jiang, J.; Sun, K.; Wang, J.; Zhang, Y.: Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions. Mar. Pol. Bul. 78, 69 (2014). doi:10.1016/j.marpolbul.2013.11.007

    Article  Google Scholar 

  8. Chen, M.; Xua, P.; Zeng, G.; Yang, C.; Huang, D.; Zhang, J.: Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavymetals by composting: Applications, microbes and future research needs. Biotech. Adv. 33, 745–755 (2015). doi:10.1016/j.biotechadv.2015.05.003

    Article  Google Scholar 

  9. AL-Othman Z.A., Naushad Mu.: Inamuddin, Organic–inorganic type composite cation exchanger poly-o-toluidine Zr(IV) tungstate: Preparation, physicochemical characterization and its analytical application in separation of heavy metals, Chem. Eng. J. 172, 369 (2011) doi:10.1016/j.cej.2011.06.018

  10. Sharma, P.: Neetu, Synthesis, characterization and sorption behavior of zirconium(IV) antimonotungstate: An inorganic ion exchanger. Desalination. 267, 277 (2011). doi:10.1016/j.desal.2010.09.040

  11. Akhtar, A.; Khan, M.D.A.; Nabi, S.A.: Synthesis, characterization and photolytic degradation activity of poly-o-toluidine-thorium(IV)molybdophosphate cation exchanger: Analytical application in metal ion treatment. Desalination. 361, 1 (2015). doi:10.1016/j.desal.2015.01.028

  12. Rahman, N.; Haseen, U.; Rashid, M.: Synthesis and characterization of polyacrylamide zirconium (IV) iodate ion-exchanger: Its application for selective removal of lead (II) from wastewater. Arabian J. Chem. (2013) doi:10.1016/j.arabjc.2013.06.029

  13. Rahman, N.; Haseena, U.: Development of polyacrylamide chromium oxide as a new sorbent for solid phase extraction of As(III) from food and environmental water samples. RSC Adv. 5, 7311–7323 (2015)

    Article  Google Scholar 

  14. Khan, A.A.; Shaheen, S.; Habib, U.: Synthesis and characterization of poly-o-anisidine Sn(IV)tungstate: A new and novel ‘organic-inorganic’nano-composite material and its electro-analytical applications as Hg (II) ion-selective membrane electrode. J. Adv. Res. 3, 269 (2012) doi:10.1016/j.jare.2011.09.002

  15. Rahman, N.; Haseen, U.: Inorganic and Polymeric Hybrid Ion Exchangers: Removal of Toxic Heavy Metal ions. Lap Lambert Academic Publishing, Germany (2014). ISBN -13:978-3-659-38850-7)

  16. Arrad, O.; Sasson, Y.: Commercial ion exchange resins as catalysts in solid-solid-liquid reactions. J. Org. Chem. 54, 4993 (1989). doi:10.1021/jo00282a008

    Article  Google Scholar 

  17. Lutfullah, Rashid M.; Rahman, N.: Zirconium(IV) Phosphosulphosalicylate as an Important Lead(II) Selective Ion-Exchange Material: Synthesis, Characterization and Adsorption Study, Adv. Sci. Lett. 17, 184 (2012) doi:10.1166/asl.2012.3683

  18. Lutfullah, Rashid M., Rahman N., Synthesis, characterization and sorption characteristics of a fibrous organic—inorganic composite material, Adv. Sci. Lett. 17, 136 (2012) DOI:10.1166/asl.2012.3691

  19. Langmuir, I.: the adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361 (1918). doi:10.1021/ja02242a004

    Article  Google Scholar 

  20. Crini, G.: Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigments 77, 415 (2008). doi:10.1016/j.dyepig.2007.07.001

    Article  Google Scholar 

  21. Rahman, N.; Haseen, U.: Equilibrium modeling, kinetic, and thermodynamic studies on adsorption of Pb(II) by a hybrid inorganic-organic material: polyacrylamide zirconium(IV) iodate, Ind. Eng. Chem. Res. 53, 8198 (2014) http://pubs.acs.org/doi/pdf/10.1021/ie500139k

  22. Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M.C.: Adsorption studies of cationic dyes onto Ashoka (Saraca asoca) leaf powder. J. Taiwan Inst. Chem. Eng. 43, 604 (2012). doi:10.1016/j.jtice.2012.01.008

    Article  Google Scholar 

  23. Hameed, B.H.: Grass waste: a novel sorbent for the removal of basic dye from aqueous solution. J. Hazard. Mat. 166, 233 (2009). doi:10.1016/j.jhazmat.2008.11.019

    Article  Google Scholar 

  24. Zhao, F.; Tang, W.Z.; Zhao, D.; Meng, Y.; Yin, D.; Sillanpää, M.: Adsorption kinetics, isotherms and mechanisms of Cd(II), Pb(II), Co(II) and Ni(II) by a modified magnetic polyacrylamide microcomposite adsorbent. J. Water Process Eng. 4, 47 (2014). doi:10.1016/j.jwpe.2014.09.003

    Article  Google Scholar 

  25. Zhao, F.; Repo, E.; Yin, D.; Sillanpaa, M.E.T.: Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: kinetics and isotherms. J. Coll. Interface Sci. 409, 174 (2013). doi:10.1016/j.jcis.2013.07.062

    Article  Google Scholar 

  26. Mane, V.S.; Mall, I.D.; Srivastava, V.C.: Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash. J. Environ. Manag. 84, 390 (2007). doi:10.1016/j.jenvman.2006.06.024

    Article  Google Scholar 

  27. Atkins, P.: Physical Chemistry, 6th edn. Oxford University Press, London (1999)

    Google Scholar 

  28. Lagergren, S.: About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1 (1898)

    Google Scholar 

  29. Ho, Y.S.; McKay, G.: Pseudo-second order model for sorption processes. Process. Biochem. 34, 451 (1999). doi:10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  30. Weber, W. J.; Morris, J. C.: J. Sani. Eng. Div. 89, 31 (1963) http://cedb.asce.org/cgi/WWWdisplay.cgi?13042

  31. Donia, A.M.; Atia, A.A.; Al-amrani, W.A.; El-Nahas, A.M.: Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica. J. Hazard. Mat. 161, 1544 (2009). doi:10.1016/j.jhazmat.2008.05.042

    Article  Google Scholar 

  32. Ahmad, A.; Rafatullah, M.; Sulaiman, O.; Ibrahim, M.H.; Hashim, R.: Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. J. Hazard. Mat. 170, 357 (2009). doi:10.1016/j.jhazmat.2009.04.087

    Article  Google Scholar 

  33. Raza, W.; Haque, M.M.; Muneer, M.; Fleisch, M.; Hakki, A.; Bahnemann, D.: Photocatalytic degradation of different chromophoric dyes in aqueous phase using La and Mo doped \(\text{TiO}_{2}\) hybrid carbon spheres. J. Alloys Compd. 632, 837 (2015). doi:10.1016/j.jallcom.2015.01.222

    Article  Google Scholar 

  34. Qureshi, S.Z.; Khan, M.A.; Rahman, N.: Synthesis and ion exchange behaviour of a new three-component ion exchange material: zirconium (IV) arsenate vanadate. Bull. Chem. Soc. Jpn. 68, 1613–1617 (1995)

  35. Socrates, G.: Infrared Characteristic Group Frequencies. Wiley, New York (1980). 145

    Google Scholar 

  36. Nabi, S.A.; Shahadata, M.; Bushra, R.; Oves, M.; Ahmed, F.: synthesis and characterization of polyanilineZr(IV)sulphosalicylate composite and its applications (1) electrical conductivity, and (2) antimicrobial activity studies. Chem. Eng. J. 173, 706–71 (2011)

  37. Apopei, D.F.; Dinu, M.V.; Trochimczuk, A.W.; Dragan, E.S.: Sorption isotherms of heavy metal ions onto semi-interpenetrating polymer network cryogels based on polyacrylamide and anionically modified potato starch. Ind. Eng. Chem. Res. 51, 10462 (2012). doi:10.1021/ie301254z

    Article  Google Scholar 

  38. Khan, M.D.A.; Akhtar, A.; Nabi, S.A.: Kinetics and thermodynamics of alkaline earth and heavy metal ion exchange under particle diffusion controlled phenomenon using polyaniline-sn(iv)iodophosphate nanocomposite. J. Chem. Eng. Data 59, 2677 (2014). doi:10.1021/je500523n

    Article  Google Scholar 

  39. Irfan, M.; Islam, M.U.; Ali, I.; Iqbal, M.A.; Karamat, N.; Khan, H.M.: Effect of \(\text{Y}_{2}\text{O}_{3}\) doping on the electrical transport properties of \(\text{Sr}_{2}\text{MnNiFe}_{12}\text{O}_{22}\) Y-type hexaferrite. Cur. App. Phy. 14, 112 (2014). doi:10.1016/j.cap.2013.10.010

    Article  Google Scholar 

  40. Baral, A. K.; Sankaranarayanan, V.: Ion transport and dielectric relaxation studies in nanocrystalline \(\text{Ce}_{0.8}\text{Ho}_{0.2}\text{O}_{2-\delta}\) material. Phys. B: Cond. Mater. 404, 1674–1678 (2009) doi:10.1016/j.physb.2009.02.002

  41. Baral, A. K.; Narayanan, S.; Ramezanipour, F.; Thangadurai, V.: Evaluation of fundamental transport properties of Li-excess garnet-type Li5+2xLa3Ta2xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy, Phy. Chem. Chem. Phy. 16, 11356 (2014) DOI:10.1039/C4CP00418C

  42. Khan, M.D.A.; Akhtar, A.; Nabi, S.A.: Investigation of the electrical conductivity and optical property of polyaniline-based nanocomposite and its application as an ethanol vapor sensor. New J. Chem. 39, 3728 (2015). doi:10.1039/C4NJ02260B

    Article  Google Scholar 

  43. Hashim, M.; Alimuddin, Kumar S.; Shirsath, S. E.; Kotnala, R.K.; Shah, J.; Kumar, R.: Synthesis and characterizations of Ni2þ substituted cobalt ferrite nanoparticles, Mat. Chem. Phys. 139, 364 (2013). doi:10.1016/j.matchemphys.2012.09.019

  44. Yin, H.; Yu, K.; Song, C.; Huang, R.; Zhu, Z.: Synthesis of Au-Decorated V2O5@ZnO Heteronanostructures and Enhanced Plasmonic Photocatalytic Activity, ACS Appl. Mater. Interfaces. 6, 14851 (2014) doi:10.1021/am501549n

  45. Raza, W.; Haque, M.M.; Muneer, M.: Synthesis of visible light driven ZnO: Characterization and photocatalytic performance. Appl. Surf. Sci. 322, 215 (2014). doi:10.1016/j.apsusc.2014.10.067

  46. Mukhlish, M.Z.B.; Najnin, F.; Rahman, M.M.; Uddin, M.J.: Photocatalytic degradation of different dyes using \(\text{TiO}_{2}\) with high surface area: a kinetic study. J. Sci. Res. 5, 301 (2013). doi:10.3329/jsr.v5i2.11641

    Google Scholar 

  47. Tang, J.; Huang, Y.; Gong, Y.; Lyu, H.; Wang, Q.; Ma, J.: Preparation of a novel graphene oxide/Fe–Mn composite and its application for aqueous Hg(II) removal. J. Hazard. Mater. 316, 151–158 (2016). doi:10.1016/j.jhazmat.2016.05.028

    Article  Google Scholar 

  48. Hadavifar, M.; Bahramifar, N.; Younesi, H.; Rastakhiz, M.; Li, Q.; Yu, J.; Eftekhari, E.: Removal of mercury(II) and cadmium(II) ions from synthetic wastewater by a newly synthesized amino and thiolated multi-walled carbon nanotubes. J. Taiwan Inst. Chem. Eng. 67, 397–405 (2016). doi:10.1016/j.jtice.2016.08.029

    Article  Google Scholar 

  49. Choi, J.M.; Jeong, D.; Cho, E.; Jun, B.; Park, S.; Yu, J.; Tahir, M.N.; Jung, S.: Chemically functionalized silica gel with alkynyl terminated monolayers as an efficient new material for removal of mercury ions from water. J. Ind. Eng. Chem. 35, 376–382 (2016). doi:10.1016/j.jiec.2016.01.020

    Article  Google Scholar 

  50. Shafiabadi, M.; Dashti, A.; Tayebi, H.: Removal of Hg (II) from aqueous solution using polypyrrole/SBA-15 nanocomposite: Experimental and modeling. Synth. Meter. 212, 154–160 (2016). doi:10.1016/j.synthmet.2015.12.020

    Article  Google Scholar 

  51. Yao, X.; Wang, H.; Ma, Z.; Liu, M.; Zhao, X.; Jia, D.: Adsorption of Hg(II) from aqueous solution using thiourea functionalized chelating fiber, Chin. J. Chem. Eng. (2016)

  52. Kumara, A. S. K.; Jiang, S.; Tseng, W.: Facile synthesis and characterization of thiol-functionalized graphene oxide as effective adsorbent for Hg(II), J.Env. Chemi. Eng. 4, 2, 2052–2065 (2016) http://www.sciencedirect.com/science/article/pii/S2213343716301130#articles

  53. Liu, L.; Ding, L.; Wu, X.; Deng, F.; Kang, R.; Luo, X.: Enhancing the Hg(II) removal efficiency from real wastewater by novel thymine-grafted reduced graphene oxide complexes. Ind. Eng. Chem. Res. 55, 6845–6853 (2016). doi:10.1021/acs.iecr.6b01359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anees Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, S.A., Khan, F., Ahmad, A. et al. Synthesis, Characterization, Electrical and Photocatalytic Studies of Polyacrylamide Zr(IV) Phosphosulphosalicylate, a Cation Exchanger: Its Application in the Removal of Hg (II) from Aqueous Solution. Arab J Sci Eng 42, 4351–4364 (2017). https://doi.org/10.1007/s13369-017-2438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2438-x

Keywords

Navigation