Skip to main content
Log in

Hybrid Taguchi-Based Particle Swarm Optimization for Flowshop Scheduling Problem

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A hybrid Taguchi-based particle swarm optimization (HTPSO) method is developed for solving multi-objective flowshop scheduling problems (FSPs). Search performance is improved using Taguchi-based crossover to avoid scheduling conflicts. Instead of the conventional approach to selecting dynamic weights randomly, which ignores very small weight values for the objective, a fuzzy inference system is used. A numerical example is given to demonstrate the application of the proposed HTPSO and its good performance. The numerical results show that the HTPSO effectively enhances particle swarm optimization. The improvement achieved by the HTPSO also exceeds that obtained by existing methods for finding Pareto optimum solutions for FSPs. Therefore, the proposed HTPSO method effectively solves multi-objective FSPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sule, D.R.: Industrial Scheduling. PWS publishing company, Boston (1996)

    Google Scholar 

  2. Wu, C.; Gu, X.: A genetic algorithm for flowshop scheduling with fuzzy processing time and due date. In: Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, pp. 2938–2942 (2004)

  3. Chen, C.L.; Vempait, V.S.; Aljaber, N.: An application of genetic algorithms for flow shop problems. Eur. J. Oper. Res. 80, 389–396 (1995)

    Article  Google Scholar 

  4. Murata, T.; Ishibuchi, H.; Tanaka, H.: Genetic algorithms for flowshop scheduling problems. Comput. Ind. Eng. 30(4), 1061–1071 (1996)

    Article  Google Scholar 

  5. Cheng, B.W.; Chang, C.L.: A study on flowshop scheduling problem combing Taguchi experimental design and genetic algorithm. Expert Syst. Appl. 32, 415–421 (2007)

    Article  Google Scholar 

  6. Arroyo, J.E.C.; Armentano, V.A.: Genetic local search for multi-objective flowshop scheduling problems. Eur. J. Oper. Res. 167, 717–738 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Tseng, L.Y.; Lin, Y.T.: A hybrid genetic local search algorithm for permutation flowshop scheduling problem. Eur. J. Oper. Res. 198, 84–92 (2009)

    Article  MATH  Google Scholar 

  8. Ishibuchi, H.; Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev. 28, 392–403 (1998)

    Article  Google Scholar 

  9. Ishibuchi, H.; Murata, T.: Multi-objective genetic local search algorithm. In: Proceedings of 3rd IEEE International Conference Evolutionary Computation, Nagova, Japan, pp. 119–124 (1996)

  10. Ishibuchi, H.; Yoshida, T.; Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 7, 204–223 (2003)

    Google Scholar 

  11. Ishibuchi, H.; Yoshida, T.; Murata, T.: Selection of initial solutions for local search in multiobjective genetic local search. In: Proceedings of Congress on Evolutionary Computation, Honolulu, HI, May 12–17, pp. 950–955 (2002)

  12. Murata, T.; Ishibuchi, H.; Tanaka, H.: Multi-objective genetic algorithm and its application to flowshop scheduling. Comput. Ind. Eng. 30, 957–968 (1996)

    Google Scholar 

  13. Murata, T.; Ishibuchi, H.: MOGA: Multi-objective genetic algorithms. In: Proceedings of 1995 IEEE International Conference on Evolutionary Computation, Perth, Australia, pp. 289–294 (1995)

  14. Neppalli, V.R.; Chen, C.L.; Gupa, J.N.D.: Genetic algorithm for two-stage bi-criteria flowshop problem. Eur. J. Oper. Res. 95, 356–373 (1996)

    Google Scholar 

  15. Li, B.B.; Wang, L.: A hybrid quantum-inspired genetic algorithm for multi-objective flow shop scheduling. IEEE Trans. Syst. Man. Cybern. B, 37, 576–591 (2007)

    Google Scholar 

  16. Dugardin, F.; Yalaoui, F.; Amodeo, L.: “New multi-objective method to solve reentrant hybrid flow shop scheduling problem. Eur. J. Oper. Res. 203, 22–31 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karimi, N.; Zandieh, M.; Karamooz, H.R.: Bi-objective group scheduling in hybrid flexible flowshop : a multi-phase approach. Expert Syst. Appl. 37, 4024–4032 (2010)

    Article  Google Scholar 

  18. Yang, C.I.; Chou, J.H.; Chang, C.K.: Hybrid Taguchi-based genetic algorithm for flowshop scheduling problem. Int. J. Innov. Comput. Inf. Control, 9 (2013) (in press)

  19. Visalakshi, S.; Baskar, S.: Multiobjective decentralized congestion management using modified NSGA-II. Arab J. Sci. Eng. 36, 827–840 (2011)

    Article  Google Scholar 

  20. Soroudi, A.; Ehsan, M.: Application of a modified NSGA method for multi-objective static distributed generation planning. Arab J. Sci. Eng. 36, 809–825 (2011)

    Google Scholar 

  21. Pan, Q.K.; Tasgetiren, M.F.; Liang, Y.C.: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput. Oper. Res. 35, 2807–2839 (2008)

    Google Scholar 

  22. Jarboui, B.; Ibrahim, S.; Siarry, P.; Rebai, A.: A combinatorial particle swarm optimization for solving permutation flowshop problems. Comput. Ind. Eng. 54, 526–538 (2008)

    Google Scholar 

  23. Tasgeturen, M.F.; Liang, Y.C.; Sevkli, M.; Gencyilmaz, G.: A particle swarm optimization algorithm for makespan and total flowtime Minimization in the permutation flowshop sequencing problem. Eur. J. Oper. Res. 177, 1930–1947 (2007)

    Article  Google Scholar 

  24. Tasgeturen, M.F.; Liang, Y.C.; Sevkli, M.; Gencyilmaz, G.: Particle swarm optimization algorithm for makespan and maximum lateness minimization in permutation flowshop sequencing problem. In: Proceedings of the 4th International Symposium on Intelligent Manufacturing Systems, Turkey, Sakarya, pp. 431–441 (2004)

  25. Liao, C.J.; Tseng, C.T.; Luam, P.: A discrete version of particle swarm optimization for flowshop scheduling problems. Comput. Oper. Res. 34, 3099–3111 (2007)

    Article  MATH  Google Scholar 

  26. Rahimi-Vahed, A.R.; Mirghorbani, S.M.: A multiobjective particle swarm for a flow shop scheduling problem. J. Comb. Optim. 13, 79–102 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Li, B.B.; Wang, L.; Liu, B.: An effective PSO-based hybrid alogrthm fo multiobjective permutation flowshop scheduling. IEEE Trans. Syst. Man. Cybern. A38, 818–831 (2008)

    Google Scholar 

  28. Sha, D.Y.; Lin, H.H.: A particle swarm optimization for multiobjective flowshop scheduling. Int. J. Adv. Manuf. Technol. 44, 749–758 (2009)

    Article  Google Scholar 

  29. Kennedy, J.; Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE Conference Neural Networks IV, vol. 4, pp. 1942–1948 (1995)

  30. Kennedy, J.; Eberhart, R.C.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

  31. Shi, Y.; Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

  32. Shi, Y.; Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the IEEE International Congress on Evolutionary Computation, pp. 1945–1950 (1999)

  33. Eberhart, R.C.; Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the IEEE International Congress on Evolutionary Computation, pp. 94–100 (2001)

  34. Eberhart, R.C.; Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of Congress on Evolutionary Computation, vol. 1, pp. 27–30 (2001)

  35. Ratnaweera, A.; Halgamuge, S. K.; Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    Article  Google Scholar 

  36. Chatterjee, A.; Siarry, P.: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 33, 859–871 (2006)

    Article  MATH  Google Scholar 

  37. Ko, C.N.; Chang, Y.P.; Wu, C.J.: An orthogonal-array-based particle swarm optimizer with nonlinear time-varying evolution. Appl. Math. Comput. 191, 272–279 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Yen, J.; Langari, R.: Fuzzy Logic: Intelligence, Control, and Information, Prentice Hall, New Jersey (1998)

  39. Hung, D.L.; Zajak, W.F.: Design and implementation of a hardware fuzzy inference system. Inf. Sci. 3, 193–207 (1995)

    Google Scholar 

  40. Montgomery, D.C.: Design and Analysis of Experiments, 3rd edn. Wiley, New York (1991)

  41. Phadke, M.S.: Quality Engineering Using Robust Design. McGraw-Hill, New York (1989)

    Google Scholar 

  42. Tsai, J.T.; Liu, T.K.; Ho, W.H.; Chou, J.H.: An improved genetic algorithm for job-shop scheduling problems using Taguchi-based crossover. Int. J. Adv. Manuf. Technol. 38, 987–994 (2008)

    Article  Google Scholar 

  43. French, S.: Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop. Ellis Horwood Limited, Wiley, New York (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Horng Chou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CI., Chou, JH. & Chang, CK. Hybrid Taguchi-Based Particle Swarm Optimization for Flowshop Scheduling Problem. Arab J Sci Eng 39, 2393–2412 (2014). https://doi.org/10.1007/s13369-013-0756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0756-1

Keywords

Navigation