Skip to main content
Log in

Theoretical Study of the Mechanism of an Inverse-Demand Diels–Alder Reaction

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Quantum mechanical calculations (AM1, PM3, ab initio HF/3-21G, DFT(B3LYP/6-31G*) and MP2//(B3LYP/6-31G*) have been used to study the inverse-demand synchronous concerted Diels–Alder reactions between dimethyl-1,2,4,5-tetrazine-3,6-dicarboxylate (diene) and a variety of dienophiles (ethylene, cyclopentadiene, 1-hexene, cyclohexene). All the molecular structures (reactants, transition states, intermediates and adducts) were optimized using the semi-empirical AM1 method. The calculated energies and volumes showed that the cycloaddition reaction followed a mechanism involving the formation of an intermediate, elimination of N2, and a 1,3-hydrogen shift adduct. The reaction energies of the systems were obtained by using semi-empirical AM1 calculations and showed good agreement with the experimental data. In contrast, calculations of the reaction energies using PM3, HF/3-21G, DFT (B3LYP/6-31G*) and MP2//(B3LYP/6-31G* were in poor agreement with the experimental data. Compared to the experimental data, the activation energies were overestimated using AM1, PM3 and HF/3-21G, while they were underestimated using DFT (B3LYP/6-31G*) and MP2//(B3LYP/6-31G*).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dell C.P.: Cycloadditions in synthesis. J. Chem. Soc. Perkin Trans. 1, 3873 (1998)

    Article  Google Scholar 

  2. Weinreb, S.M.: Comprehensive Organic Synthesis. In: Trost, B.M.; Fleming, I. (eds.), vol. 5. Pergamon Press, Oxford (1991)

  3. Stella L., Abraham H., Feneu-Dupont J., Tinant B., Declercq J.P.: Asymmetric Aza–Diels–Alder reaction using the chiral 1-phenyl ethyl imine of methyl glyoxylate. Tetrahedron Lett. 31, 2603 (1990)

    Article  Google Scholar 

  4. Kadritzky, A.R.; Gordeev, M.F.J.: Lithium tetrafluoroborate-assisted reactions of N-(alpha-aminoalkyl)benzotriazoles with olefins and 1,3-dienes. New syntheses of 1,2,5,6- tetrahydropyridinium salts, 1,2,3,4-tetrahydroquinolines, and some related heterocyclic systems. J. Org. Chem. 58, 4049 (1993)

    Google Scholar 

  5. Mayr H., Ofial A.R., Sauer J., Schmied B.E.: [2 + 4] Cycloadditions of Iminium Ions—Concerted or Stepwise Mechanism of Aza–Diels–Alder Reactions? Eur. J. Org. Chem. 2013, 175 (2000)

    Google Scholar 

  6. Hamer, J. (eds): 1,4-cycloaddition reactions the Diels–Alder reaction in heterocyclic syntheses. Academic Press, New York (1967)

    Google Scholar 

  7. Wasserman A.: Diels–Alder Reactions. Elsevier, New York (1965)

    Google Scholar 

  8. Brieger G., Bennett J.N.: The intramolecular Diels–Alder reaction. Chem. Rev. 80, 63 (1980)

    Article  Google Scholar 

  9. McCarrick M.A., Wu Y.D., Houk K.N.: Exo-Lone-pair effect on Hetero–Diels–Alder cycloaddition stereochemistry. J. Am. Chem. Soc. 114, 1499 (1992)

    Article  Google Scholar 

  10. McCarrick M.A., Wu Y.D., Houk K.N.: Hetero–Diels–Alder reaction transition structures: reactivity, stereoselectivity, catalysis, solvent effects, and the exo-lone-pair effect. J. Org. Chem. 58, 3330 (1993)

    Article  Google Scholar 

  11. Domingo L.R.: A Theoretical Study of the Molecular Mechanism of the Reaction between NN-Dimethylmethyleneammonium Cation and Cyclopentadiene. J. Org. Chem. 66, 3211 (2001)

    Article  Google Scholar 

  12. Hedberg C., Pinho P., Roth P., Andersson P.G.: Diels–Alder Reaction of Heterocyclic Imine Dienophiles. J. Org. Chem. 65, 2810 (2000)

    Article  Google Scholar 

  13. Domingo L.R., Oliva M., Andres J.: A Theoretical Study of the Reaction between Cyclopentadiene and Protonated Imine Derivatives: A Shift from a Concerted to a Stepwise Molecular Mechanism. J. Org. Chem. 66, 6151 (2001)

    Article  Google Scholar 

  14. Quenneville J., Germann T.C.: A quantum chemistry study of Diels–Alder dimerizations in benzene and anthracene. J. Chem. Phys. 131, 24313 (2009)

    Article  Google Scholar 

  15. Vijaya R., Narahari G.S.: A theoretical study of intramolecular Diels–Alder reactions, diene–(CH2) n –dienophile (n = 1, 2, 3 and 4). J. Mol. Struct. (Theochem) 618, 201 (2002)

    Article  Google Scholar 

  16. Borden W.T., Loncharich R.J., Houk K.N.: Synchronicity in Multibond Reactions. Ann. Rev. Phys.Chem. 39, 213 (1988)

    Article  Google Scholar 

  17. Branchadell V., Sodupe M., Ortuno R.M., Oliva A.D., Gomez-Pardo A., Guingant d’Angelo J.: Diels–Alder cycloadditions of electron-rich, electron-deficient, and push-pull dienes with cyclic dienophiles: high-pressure-induced reactions and theoretical calculations. J. Org. Chem. 56, 4135 (1991)

    Article  Google Scholar 

  18. Boger D.L.: Diels–Alder reactions of heterocyclic aza dienes. Scope and applications. Chem. Rev. 86, 781 (1986)

    Google Scholar 

  19. Boger, D.L.; Weinreb, S.M.: Hetero Diels–Alder Methodology in Organic Synthesis. Academic, San Diego (1987)

  20. Boger D.L., Boyce C.W., Labroli M.A., Sehon C.A., Jin Q.: Total Syntheses of Ningalin A, Lamellarin O, Lukianol A, and Permethyl Storniamide A Utilizing Heterocyclic Azadiene Diels–Alder Reactions. J. Am. Chem. Soc. 121, 54 (1999)

    Article  Google Scholar 

  21. Boger D.L., Soene D.R., Boyce C.W., Hedrick M.P., Jin Q.: Total Synthesis of Ningalin B Utilizing a Heterocyclic Azadiene Diels–Alder Reaction and Discovery of a New Class of Potent Multidrug Resistant (MDR) Reversal Agents. J. Org. Chem. 65, 2479 (2000)

    Article  Google Scholar 

  22. Boger D.L., Hong J.: Asymmetric Total Synthesis of ent-(−)-Roseophilin: Assignment of Absolute Configuration. J. Am. Chem. Soc. 123, 8515 (2001)

    Article  Google Scholar 

  23. Carboni R.A., Lindsey R.V.: Reactions of Tetrazines with Unsaturated Compounds. New Synthesis of Pyridazines. J. Am. Chem. Soc. 81, 4342 (1959)

    Article  Google Scholar 

  24. Stewart, J.J.P.: Reviews in computational Chemistry. In: Lipkowitz, K.B.; Boyd, D.B.V. (eds.) Wiley-VCH, New York (1990)

  25. Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P.: Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902 (1985)

    Google Scholar 

  26. Stewart J.J.P.: Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 10, 209 (1989)

    Article  Google Scholar 

  27. Binkley J.S., Pople J.A., Hehre W.J.: Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102, 939 (1980)

    Article  Google Scholar 

  28. Becke A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993)

    Article  Google Scholar 

  29. Bodor N., Gabanyi Z., Wong C.: A new method for the estimation of partition coefficient. J. Am. Chem. Soc. 111, 3783 (1989)

    Article  Google Scholar 

  30. Gavezotti A.: The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity. J. Am. Chem. Soc. 105, 5220 (1983)

    Article  Google Scholar 

  31. Bondi A.: van der Waals Volumes and Radii. J. Phys. Chem. 68, 441 (1964)

    Article  Google Scholar 

  32. Frisch, M.J.G.; Trucks, W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T. Jr.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.: Gaussian 03. Gaussian, Inc., Wallingford (2004)

  33. Head-Gordon M., Pople J.A., Frisch M.J.: MP2 energy evaluation by direct methods. Chem. Phys. Lett. 153, 503 (1988)

    Article  Google Scholar 

  34. Houk K.N., Li Y., Evenseck J.D.: Transition Structures of Hydrocarbon Pericyclic Reactions. Angew. Chem. Int. Ed. Engl. 31, 682 (1992)

    Article  Google Scholar 

  35. Branchadell V., Orti J., Ortuno R.M., Oliva A., Font J., Bertran J., Dannenberg J.J.: Mechanism and site selectivity in the Diels–Alder reaction between protoanemonin and butadiene. A theoretical study. J. Org. Chem. 56, 2190 (1991)

    Article  Google Scholar 

  36. Kiselev V.D., Kashaeva E.A., Iskhakova G.G., Shihab M.S., Konovalov A.I.: Volume, enthalpy and entropy of activation of the Diels–Alder reaction of dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate with 1-hexene. Tetrahedron 55, 12201 (1999)

    Article  Google Scholar 

  37. Cox J.D., Pilcher G.: Thermochemistry of organic and organometallic compounds, vol 643. Academic press, London (1970)

    Google Scholar 

  38. Vijaya, R.; Dinadayalane, T.C.; Narahari, G.S.: Diels–Alder reactions between cyclic five- membered dienes and acetylene. J. Mol. Struct. 589/590, 291 (2002)

    Google Scholar 

  39. Tarek H.M., Howard M.: AM1 and PM3 semi-empirical study of the Diels–Alder reaction between N-, P-, O- and S-substituted aromatic heterocyclic five-membered rings with acrolein. J. Mol. Struct. (Theochem) 672, 35 (2004)

    Article  Google Scholar 

  40. Vildan G., Kelli S.K., Andrew G.L., Patrick S.L., Michael D.B., Houk K.N.: A Standard Set of Pericyclic Reactions of Hydrocarbons for the Benchmarking of Computational Methods: The Performance of ab Initio, Density Functional, CASSCF, CASPT2, and CBS-QB3 Methods for the Prediction of Activation Barriers, Reaction Energetics, and Transition State Geometries. J. Phys. Chem. A 107, 11445 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Salih Shihab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shihab, M.S. Theoretical Study of the Mechanism of an Inverse-Demand Diels–Alder Reaction. Arab J Sci Eng 37, 75–90 (2012). https://doi.org/10.1007/s13369-011-0167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-011-0167-0

Keywords

Navigation