Skip to main content
Log in

Preparation and characterization of nanocomposite based on polyaniline and graphene nanosheets

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Polymer nanocomposites based on polyaniline (PANi) and graphene nanosheets (GNS) modified with poly(sodium 4-styrensulfonate) (PSS-GNS) were prepared, and their structure and properties were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), UV-vis spectroscopy, ATR-IR spectroscopy, X-ray diffraction, elemental analysis, thermogravimetric analysis (TGA) and electrical conductivity measurements. The results revealed that for the PANi/PSS-GNS nanocomposites, the disordered structure of PSS-GNS was fully destroyed and PSS-GNS exists in the form of a single GNS or stacked PSS-GNS elements in a PANi matrix. PSS-GNS was partly covered by PANi due to hydrogen bonding that occurs between the PSS-GNS and PANi. By incorporating PSS-GNS, the electrical conductivity of PANi increased linearly from 0.84 S/cm for neat PANi to 4.96 S/cm for a PANi/PSS-GNS (5%) nanocomposite. The thermal stability of the PANi was also improved significantly to approximately 100 °C by the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bhadra, D. Khastgir, N. Singha, and H. J. Lee, Prog. Polym. Sci., 34, 783 (2009).

    Article  CAS  Google Scholar 

  2. J. Unsworth, B. A. Lunn, D. C. Innis, Z. Jin, A. Kaynak, and N. G. Boot, J. Intell. Mater. Syst. Struct., 3, 380 (1992).

    Article  Google Scholar 

  3. N. Gospodinova and C. Terlemezgan, Prog. Polym. Sci., 23, 1443 (1980).

    Article  Google Scholar 

  4. N. Kuramoto and A. Tomita, Synth. Met., 88, 147 (1997).

    Article  CAS  Google Scholar 

  5. Y. Leroux, E. Eang, C. Fave, G. Trippe, and J. C. Lacroix, Electro. Comm., 9, 1258 (2007).

    Article  CAS  Google Scholar 

  6. T. K. Sarma, D. Chowdhury, A. Paul, and A. Chattopadhyay, Chem. Comm., 9, 1048 (2002).

    Article  Google Scholar 

  7. K. Gupta, P. C. Jana, and A. K. Meikap, Synth. Met., 160, 1566 (2010).

    Article  CAS  Google Scholar 

  8. Y. Qiao, C. M. Li, S.-J. Bao, and Q.-L. Bao, J. Power Source, 170, 78 (2007).

    Article  Google Scholar 

  9. G. Chen, W. Weng, D. Wu, C. Wu, J. Lu, P. Wang, and X. Chen, Carbon, 42, 753 (2004).

    Article  CAS  Google Scholar 

  10. A. K. Geim and K. S. Novoselov, Nature Materials, 6, 183 (2007).

    Article  CAS  Google Scholar 

  11. C. D. Hodgman, Handbook of Chemistry and Physics, 42nd Ed., Chemical Rubber Publishing, 1960.

  12. S. Park and R. S. Ruoff, Nature Nanotechnology, DOI 10.1038/WNANO.2059.58.

  13. A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri, and I. Dekany, Langmuir, 19, 6050 (2003).

    Article  CAS  Google Scholar 

  14. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammers, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).

    Article  CAS  Google Scholar 

  15. M. Hirata, T. Gotou, and M. Ohba, Carbon, 43, 505 (2005).

    Article  Google Scholar 

  16. J. Yong, H. M. Jeong, and B. K. Kim, Macromol. Res., 17, 626 (2009).

    Google Scholar 

  17. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. B. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006).

    Article  CAS  Google Scholar 

  18. Y. Si and E. T. Samulski, Nano Letter, 8, 1679 (2008).

    Article  CAS  Google Scholar 

  19. S. E. Bourdo and T. Viswanathan, Carbon, 43, 2983 (2005).

    Article  CAS  Google Scholar 

  20. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, Electro. Comm., 11, 1158 (2009).

    Article  CAS  Google Scholar 

  21. X. S. Du, M. Xiao, and Y. Z. Meng, Eur. Polym. Sci., 40, 1489 (2004).

    Article  CAS  Google Scholar 

  22. J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, and F. Wei, Carbon, 48, 487 (2010).

    Article  CAS  Google Scholar 

  23. L. Staudenmaier, Ber. Deutsch. Chem. Ges., 31, 1481 (1898).

    Article  CAS  Google Scholar 

  24. W. L. Zhang, B. J. Park, and H. J. Choi, Chem. Comm., 46, 5596 (2010).

    Article  CAS  Google Scholar 

  25. Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, J. Am. Chem. Soc., 130, 5856 (2008).

    Article  CAS  Google Scholar 

  26. K. P. Loh, Q. Bao, P. K. Ang, and J. Yang, J. Mater. Chem., 20, 2277 (2010).

    Article  CAS  Google Scholar 

  27. M. S. Dresselhaus, Supercarbon: Synthesis, Properties and Application, S. Yoshimura and R. P. H. Chang, Eds., Springer, New York, 1988, vol. 33, p.9.

    Google Scholar 

  28. J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang, and A. G. MacDiarmid, Macromolecules, 24, 779 (1991).

    Article  CAS  Google Scholar 

  29. X. Zhao, N. Song, X. Chen, X. Fan, and Q. Zhou, J. Mater. Chem., 16, 4619 (2006).

    Article  CAS  Google Scholar 

  30. K. G. Neoh, E. Tang, and K. L. Tan, Synth. Met., 60, 13 (1993).

    Article  CAS  Google Scholar 

  31. M. Levitt and M. F. Perutz, J. Mol. Biol., 201, 751 (1988).

    Article  CAS  Google Scholar 

  32. S. Bhadra, N. K. Singha, and D. Khastgir, J. Appl. Polym. Sci., 104, 1900 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daewon Sohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tung, N.T., Van Khai, T., Jeon, M. et al. Preparation and characterization of nanocomposite based on polyaniline and graphene nanosheets. Macromol. Res. 19, 203–208 (2011). https://doi.org/10.1007/s13233-011-0216-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0216-2

Keywords

Navigation