Skip to main content
Log in

Fabrication of selective anti-biofouling surface for micro/nanopatterning of proteins

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

An Erratum to this article was published on 24 December 2010

Abstract

This paper reports a simple method for creating a functionalized surface for the efficient micro/nanopatterning of proteins by micromolding in capillaries (MIMIC) of poly(ethylene glycol)-poly(lactide) diblock copolymer (PEG-PLA) and self-assembled polyelectrolyte multilayers (PEL). The fabricated surface consisted of two distinct regions: a PEL region to promote protein immobilization and a PEG-PLA background as a biological barrier to prevent the nonspecific binding of proteins. When the ability of anti-biofouling of PEG-PLA was compared with the most widely used blocking agents, such as bovine serum albumin (BSA) and skim milk, the PEG-PLA prevents the nonspecific adsorption of several proteins. The properties of a functionalized surface were characterized by the water contact angle and atomic force microscopy (AFM). Topological analysis clearly indicated that the MIMIC method provides a reliable surface regardless of the micro- and nanopattern size. Two different functionalities of the fabricated surface produce uniform protein patterns from the micro- to nanoscale with a high signal to noise ratio. The proposed method allows for flexibility in forming shapes, such as lines, squares, circles, triangles and stars, and can control the pattern size from 400 nm to 90 μm. Finally, the antigen-antibody assay showed good linearity over the range of 10 ng/mL to 25 μg/mL, indicating its feasibility for a quantitative measurement of the concentration of target proteins in a sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Agheli, J. Malmstrom, E. M. Larsson, M. Textor, and D. S. Sutherland, Nano Lett., 6, 1165 (2006).

    Article  CAS  Google Scholar 

  2. I. Barbulovic-Nad, M. Lucente, Y. Sun, M. Zhang, A. R. Wheeler, and M. Bussmann, Crit. Rev. Biotechnol., 26, 237 (2006).

    Article  CAS  Google Scholar 

  3. H. W. Shim, J. H. Lee, T. S. Hwang, Y. W. Rhee, Y. M. Bae, J. S. Choi, J. Han, and C. S. Lee, Biosens. Bioelectron., 22, 3188 (2007).

    Article  CAS  Google Scholar 

  4. F. Rusmini, Z. Zhong, and J. Feijen, Biomacromolecules, 8, 1775 (2007).

    Article  CAS  Google Scholar 

  5. M. Mrksich, L. E. Dike, J. Tien, D. E. Ingber, and G. M. Whitesides, Exp. Cell Res., 235, 305 (1997).

    Article  CAS  Google Scholar 

  6. H. Yamazoe, T. Uemura, and T. Tanabe, Langmuir, 24, 8402 (2008).

    Article  CAS  Google Scholar 

  7. D. Falconnet, G. Csucs, H. M. Grandin, and M. Textor, Biomaterials, 27, 3044 (2006).

    Article  CAS  Google Scholar 

  8. J. H. Lee, H. E. Kim, J. H. Im, Y. M. Bae, J. S. Choi, K. M. Huh, and C. S. Lee, Colloids Surf. B, 64, 126 (2008).

    Article  CAS  Google Scholar 

  9. C. S. Lee, S. H. Lee, Y. G. Kim, J. H. Lee, Y. K. Kim, and B.G. Kim, Biosens. Bioelectron., 22, 891 (2007).

    Article  Google Scholar 

  10. A. S. Blawas and W. M. Reichert, Biomaterials, 19, 595 (1998).

    Article  CAS  Google Scholar 

  11. D. S. Ginger, H. Zhang, and C. A. Mirkin, Angew. Chem. Int. Ed., 43, 30 (2004).

    Article  Google Scholar 

  12. A. Doraiswamy, T. M. Dunaway, J. J. Wilker, and R. J. Narayan, J. Biomed. Mater. Res. Part B, 89B, 28 (2009).

    Article  CAS  Google Scholar 

  13. D. S. Shin, K. N. Lee, K. H. Janga, J. K. Kim, W. J. Chung, Y. K. Kim, and Y. S. Lee, Biosens. Bioelectron., 19, 485 (2003).

    Article  CAS  Google Scholar 

  14. K. E. Schmalenberg, H. M. Buettner, and K. E. Uhrich, Biomaterials, 25, 1851 (2004).

    Article  CAS  Google Scholar 

  15. K. Y. Suh, J. Seong, A. Khademhosseini, P. E. Laibinis, and R. Langer, Biomaterials, 25, 557 (2004).

    Article  CAS  Google Scholar 

  16. A. Khademhosseini, S. Y. Jon, K. Y. Suh, T. T. Tran, G. Eng, J. Yeh, J. Seong, and R. Langer, Adv. Mater., 15, 1995 (2003).

    Article  CAS  Google Scholar 

  17. E. W. Olle, J. Messamore, M. P. Deogracias, S. D. McClintock, T. D. Anderson, and K. J. Johnson, Exp. Mol. Pathol., 79, 206 (2005).

    Article  CAS  Google Scholar 

  18. H. Zhu and M. Snyder, Curr. Opin. Chem. Biol., 5, 40 (2001).

    Article  CAS  Google Scholar 

  19. J. L. Tan, J. Tien, and C. S. Chen, Langmuir, 18, 519 (2002).

    Article  CAS  Google Scholar 

  20. A. W. Flounders, D. L. Brandon, and A. H. Bates, Biosens. Bioelectron., 12, 447 (1997).

    Article  CAS  Google Scholar 

  21. L. S. Krishnan, C. J. Weinman, and C. K. Ober, J. Mater. Chem., 18, 3405 (2008).

    Article  CAS  Google Scholar 

  22. A. Quinn, E. Tjipto, A. M. Yu, T. R. Gengenbach, and F. Caruso, Langmuir, 23, 4944 (2007).

    Article  CAS  Google Scholar 

  23. E. Ostuni, C. S. Chen, D. E. Ingber, and G. M. Whitesides, Langmuir, 17, 2828 (2001).

    Article  CAS  Google Scholar 

  24. C. H. Choi, Y. G. Kim, Y. H. Yang, J. H. Lee, T. S. Hwang, and C. S. Lee, Macromol. Res., 18, 3 (2010).

    Google Scholar 

  25. P. T. Hammond, Adv. Mater., 16, 1271 (2004).

    Article  CAS  Google Scholar 

  26. Z. Y. Tang, Y. Wang, P. Podsiadlo, and N. A. Kotov, Adv. Mater., 18, 3203 (2006).

    Article  CAS  Google Scholar 

  27. Y. L. Liu, M. K. Shipton, J. Ryan, E. D. Kaufman, S. Franzen, and D. L. Feldheim, Anal. Chem., 79, 2221 (2007).

    Article  CAS  Google Scholar 

  28. S. Park, H. S. Yang, D. Kim, K. Job, and S. Jon, Chem. Commun., 2876 (2008).

  29. S. Krishnan, R. Ayothi, A. Hexemer, J. A. Finlay, K. E. Sohn, R. Perry, C. K. Ober, E. J. Kramer, M. E. Callow, J. A. Callow, and D. A. Fischer, Langmuir, 22, 5075 (2006).

    Article  CAS  Google Scholar 

  30. P. Vermette and L. Meagher, Colloids Surf. B, 28, 153 (2003).

    Article  CAS  Google Scholar 

  31. S. Jeon, U. S. Kim, W. Jeon, C. B. Shin, S. Hong, I. Choi, S. Lee, and J. Yi, Macromol. Res., 17, 192 (2009).

    CAS  Google Scholar 

  32. J. L. Gong, Y. Liang, Y. Huang, J. W. Chen, J. H. Jiang, G. L. Shen, and R. Q. Yu, Biosens. Bioelectron., 22, 1501 (2007).

    Article  CAS  Google Scholar 

  33. J. S. Mitchell, T. E. Lowe, and J. R. Ingram, Analyst, 134, 380 (2009).

    Article  CAS  Google Scholar 

  34. Y. S. Yang, Y. M. Jeon, C. W. Lee, W. C. Chang, J. G. Kim, M. S. Gong, B. K. Choi, and S. W. Joo, Macromol. Res., 14, 251 (2006).

    CAS  Google Scholar 

  35. P. Leonard, P. Safsten, S. Hearty, B. McDonnell, W. Finlay, and R. O’Kennedy, J. Immunol. Methods, 323, 172 (2007).

    Article  CAS  Google Scholar 

  36. D. N. Kim, W. Lee, and W. G. Koh, J. Chem. Technol. Biotechnol., 84, 279 (2009).

    Article  CAS  Google Scholar 

  37. B. Huelseweh, R. Ehricht, and H. J. Marschall, Proteomics, 6, 2972 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Soo Lee or Kang Moo Huh.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s13233-010-1218-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, HH., Lee, JH., Lee, CS. et al. Fabrication of selective anti-biofouling surface for micro/nanopatterning of proteins. Macromol. Res. 18, 868–875 (2010). https://doi.org/10.1007/s13233-010-0903-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-0903-4

Keywords

Navigation