Skip to main content
Log in

An Anisotropic Analysis of Human Femur Bone with Walking Posture: Experimental and Numerical Analysis

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Load-bearing bones have a capacity to ground the load from the point of impact to the opposite end (distal end) of the same bone irrespective of the direction of (inclination) impact forces. This is only possible due to highly heterogeneous microstructure of bones. In such circumstances, it is unjustified to assume bone to be isotropic in nature. Therefore, a correction factor is introduced while assuming material property of the bone, and thus non-isotropic modeling was considered. In this study, stress analysis of proximal femur bone with isotropic and anisotropic (non-isotropic) material property is modeled while the reaction force corresponding to walking cycle is implemented at the femur head. The results showed a significant variation of 30–45% while evaluating Von-Mises stress and strain developed on the femur bone under different loading conditions. Maximum Von-Mises stress is found on the lateral-interior side of femur, while maximum strain is identified on the same plane near the neck region of femur head. This study concludes the significance of anisotropic modeling of femur bone subjected to variable loading condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K., & Nakamura, K. (2007). Prediction of strength and strain of the proximal femur by a CT-based finite element method. Journal of Biomechanics, 40(8), 1745–1753.

    Article  Google Scholar 

  2. Reijman, M., Pols H. A., Bergink, A. P., Hazes J. M., Belo J. N., Lievense A. M., & Bierma-Zeinstra S. M. (2007). Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip: the Rotterdam Study. Annals of the rheumatic diseases 66(2), 158–162.

    Article  Google Scholar 

  3. Taddei, F., Schileo, E., Helgason, B., Cristofolini, L., & Viceconti, M. (2007). The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Medical Engineering & Physics, 29(9), 973–979.

    Article  Google Scholar 

  4. Trabelsi, N., Yosibash, Z., & Milgrom, C. (2009). Validation of subject-specific automated p-FE analysis of the proximal femur. Journal of Biomechanics, 42(3), 234–241.

    Article  Google Scholar 

  5. Wille, H., Rank, E., & Yosibash, Z. (2012). Prediction of the mechanical response of the femur with uncertain elastic properties. J Biomech [Internet]., 45(7), 1140–1148.

    Article  Google Scholar 

  6. Keyak, J. H., & Falkinstein, Y. (2003). Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Medical Engineering & Physics, 25(9), 781–787.

    Article  Google Scholar 

  7. Lengsfeld, M., Schmitt, J., Alter, P., Kaminsky, J., & Leppek, R. (1998). Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation. Medical Engineering & Physics, 20(7), 515–522.

    Article  Google Scholar 

  8. Peng, L., Bai, J., Zeng, X., & Zhou, Y. (2006). Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Medical Engineering & Physics, 28(3), 227–233.

    Article  Google Scholar 

  9. Yosibash, Z., Katz, A., & Milgrom, C. (2013). Toward verified and validated FE simulations of a femur with a cemented hip prosthesis. Medical engineering & physics., 35(7), 978–987.

    Article  Google Scholar 

  10. Yosibash, Z., Trabelsi, N., & Milgrom, C. (2007). Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. Journal of biomechanics, 40(16), 3688–3699.

    Article  Google Scholar 

  11. Gislason MK, Ingvarsson P, Gargiulo P, Yngvason S, Guðmundsdóttir V, Knútsdóttir S, et al. 2014 Finite element modelling of the femur bone of a subject suffering from motor neuron lesion subjected to electrical stimulation. European journal of translational myology, 24(3):187–93.

  12. Crookshank, M., Ploeg, H.-L., Ellis, R., & MacIntyre, N. J. (2014). Repeatable calibration of Hounsfield units to mineral density and effect of scanning medium. Adv Biomech Appl [Internet]., 1(1), 15–22.

    Article  Google Scholar 

  13. Ruess, M., Tal, D., Trabelsi, N., Yosibash, Z., & Rank, E. (2012). The finite cell method for bone simulations: verification and validation. Biomechanics and Modeling in Mechanobiology, 11(3–4), 425–437.

    Article  Google Scholar 

  14. Das, S., & Sarangi, S. K. (2014). Finite element analysis of femur fracture fixation plates. International Journal of Basic and Applied Biology, 1(1), 1–5.

    Google Scholar 

  15. Masood, M. S., Ahmad, A., & Mufti, R. A. (2013). Unconventional modeling and stress analysis of femur bone under different boundary condition. Int J Sci Eng Res [Internet]., 4(12), 293–296.

    Google Scholar 

  16. Taddei, F., Cristofolini, L., Martelli, S., Gill, H. S., & Viceconti, M. (2006). Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy. Journal of Biomechanics, 39(13), 2457–2467.

    Article  Google Scholar 

  17. Gomez-Benito, M. J., Garcıa-Aznar, J. M., & Doblare M. (2005). Finite element prediction of proximal femoral fracture patterns under different loads. Journal of biomechanical engineering127(1): 9–14.

  18. Aruntaş, H. Y., Tekin, I., & Birgül, R. (2010). Determining Hounsfield unit values of mortar constituents by computerized tomography. Meas J Int Meas Confed., 43(3), 410–414.

    Article  Google Scholar 

  19. Mirza, S. B., Dunlop, D. G., Panesar, S. S., Naqvi, S. G., Gangoo, S., & Salih, S. (2010). Basic science considerations in primary total hip replacement arthroplasty. Open Orthop J [Internet]., 4, 169–180.

    Article  Google Scholar 

  20. Raheem, H., Qassim Abdullah, M., & Wael Saeed, M. (2015). The effect of human body weight on stress induced in human femur bone. International Journal of Advanced Biotechnology andResearch., 6, 976–2612.

  21. Ohtsuki, C., Kushitani, H., Kokubo, T., Kotani, S., & Yamamuro, T. (1991). Apatite formation on the surface of ceravital type glass ceramic in the body. Journal of Biomedical Materials Research, 25(11), 1363–1370.

    Article  Google Scholar 

  22. Schileo, E., Taddei, F., Cristofolini, L., & Viceconti, M. (2008). Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. Journal of Biomechanics, 41(2), 356–367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shubhashis Sanyal or Arindam Bit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Painkra, R., Sanyal, S. & Bit, A. An Anisotropic Analysis of Human Femur Bone with Walking Posture: Experimental and Numerical Analysis. BioNanoSci. 8, 1054–1064 (2018). https://doi.org/10.1007/s12668-018-0560-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0560-1

Keywords

Navigation