Skip to main content
Log in

Calcium Carbonate-Based Mucoadhesive Microcontainers for Intranasal Delivery of Drugs Bypassing the Blood–Brain Barrier

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

There is an opinion in the medical associations that intranasal administration of medicine allows direct olfactory transfer of drugs into the central nervous system bypassing the blood–brain barrier. This approach could be a valuable solution to the problem of cerebral pathology treatment. We propose a new system of microcontainers for the delivery of an active component to the brain by intranasal administration. The microcontainers were fabricated on the base of porous calcium carbonate particles modified with mucoadhesive biocompatible polymer or polymer/surfactant coating. Loperamide was encapsulated in the proposed microcontainers as a model drug, which cannot pass the blood–brain barrier. The efficiency of microcontainers loaded with the anesthetic loperamide has been assessed by the formalin test in rats in vivo. The results of the in vivo experiments demonstrate decrease in the pain sensitivity after intranasal administration of proposed system, and benefit of mucoadhesive biocompatible coating aiming to improve the anesthetic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pathak YV, editor. (2009). Handbook of nutraceuticals volume I: ingredients, formulations, and applications. Handbook of nutraceuticals volume I: ingredients, formulations, and applications. p. 292–306.

  2. Graham, N., Steiner, T.J., & Kesserling, J. (2007). Neurological disorders: Public health challenges (p. 28–37). Geneva, Switzerland: WHO, WHO Press.

  3. Pond, S. M., & Tozer, T. N. (1984). First-pass elimination. Basic concepts and clinical consequences. Clinical Pharmacokinetics, 9(1), 1–25.

    Article  Google Scholar 

  4. Sakane, T., Akizuki, M., Yoshida, M., Yamashita, S., Nadai, T., Hashida, M., et al. (1991). Transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity. Journal of Pharmacy and Pharmacology, 43(6), 449–51.

    Article  Google Scholar 

  5. Banks, W. A., During, M. J., Niehoff, M. L. (2004). Brain uptake of the glucagon-like peptide-1 antagonist exendin(9-39) after intranasal administration. Journal of Pharmacology and Experimental Therapeutics, 309(2), 469–75.

    Article  Google Scholar 

  6. Westin, U. E., Boström, E., Gråsjö, J., Hammarlund-Udenaes, M., Björk, E. (2006). Direct nose-to-brain transfer of morphine after nasal administration to rats. Pharmaceutical Research, 23(3), 565–72.

    Article  Google Scholar 

  7. Jadhav, K., Gambhire, M., Shaikh, I., Kadam, V., Pisal, S. (2007). Nasal drug delivery system-factors affecting and applications. Current Drug Theraphy, 2(1), 27–38.

    Article  Google Scholar 

  8. Mathison, S., Nagilla, R., Kompella, U. B. (1998). Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? Journal of Drug Targeting, 5(6), 415–41.

    Article  Google Scholar 

  9. Illum, L. (2004). Is nose-to-brain transport of drugs in man a reality? Journal of Pharmacy and Pharmacology, 56(1), 3–17.

    Article  Google Scholar 

  10. Read, R. C., Naylor, S. C., Potter, C. W., Bond, J., Jabbal-Gill, I., Fisher, A., et al. (2005). Effective nasal influenza vaccine delivery using chitosan. Vaccine, 23(35), 4367–74.

    Article  Google Scholar 

  11. Hinchcliffe, M., & Illum, L. (1999). Intranasal insulin delivery and therapy. Advanced Drug Delivery Reviews, 35(2–3), 199–234.

    Article  Google Scholar 

  12. Anand Kumar, T. C., David, G. F., Umberkoman, B., Saini, K. D. (1974). Uptake of radioradioactivity by body fluids and tissues in rhesus monkeys after intravenous injection or intranasal spray of tritium-labelled estradiol and progesterone. Current Science, 43(14), 435–9.

    Google Scholar 

  13. Trushina, D. B., Bukreeva, T. V., Kovalchuk, M. V., Antipina, M. N. (2014). CaCO3 vaterite microparticles for biomedical and personal care applications. Materials Science and Engineering, 45, 644–58.

    Article  Google Scholar 

  14. Donath, E., Sukhorukov, G. B., Caruso, F., Davis, S. A., Möhwald, H. (1998). Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chemie International Edition, 37(16), 2201–5.

    Article  Google Scholar 

  15. Yi, Q., & Sukhorukov, G. B. (2013). Externally triggered dual function of complex microcapsules. ACS Nano, 7(10), 8693–705.

    Article  Google Scholar 

  16. Gai, M., Frueh, J., Girard-Egrot, A., Rebaud, S., Doumeche, B., He, Q. (2015). Micro-contact printing of PEM thin films: effect of line tension and surface energies. RSC Advances, 5(64), 51891–9.

    Article  Google Scholar 

  17. Volodkin, D. (2014). CaCO3 templated micro-beads and -capsules for bioapplications. Advance in Colloid and Interface Science, 207, 306–24.

    Article  Google Scholar 

  18. Gorin, D. A., Portnov, S. A., Inozemtseva, O. A., Luklinska, Z., Yashchenok, A. M., Pavlov, A. M., et al. (2008). Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation. Physical Chemistry Chemical Physics, 10(45), 6899–905.

    Article  Google Scholar 

  19. Andreeva, D. V., Gorin, D. A., Shchukin, D. G., Sukhorukov, G. B. (2006). Magnetic microcapsules with low permeable polypyrrole skin layer. Macromolecular Rapid Communications, 27(12), 931–6.

    Article  Google Scholar 

  20. Gai, M., Frueh, J., Hu, N., Si, T., Sukhorukov, G. B., He, Q. (2016). Self-propelled two dimensional polymer multilayer plate micromotors. Physical Chemistry Chemical Physics, 18(5), 3397–401.

    Article  Google Scholar 

  21. Walker, D., Kasdorf, B. T., Jeong, H.-H., Lieleg, O., Fischer, P. (2015). Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Science Advances, 1(11), e1500501–e1500501.

    Article  Google Scholar 

  22. He, W., Frueh, J., Wu, Z., He, Q. (2016). How leucocyte cell membrane modified janus microcapsules are phagocytosed by cancer cells. ACS Applied Materials & Interfaces, 8(7), 4407–15.

    Article  Google Scholar 

  23. Yan, L., Ehrlich, P. J., Gibson, R., Pickett, C., Beckman, R. A. (2009). How can we improve antibody-based cancer therapy? MAbs, 1(1), 67–70.

    Article  Google Scholar 

  24. Heyder, J., Gebhart, J., Rudolf, G., Schiller, C. F., Stahlhofen, W. (1986). Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. Journal of Aerosol Science, 17(5), 811–25.

    Article  Google Scholar 

  25. Shang, Y. D., Inthavong, K., Tu, J. Y. (2015). Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Computers & Fluids, 114, 141–50.

    Article  MathSciNet  Google Scholar 

  26. Hatch, T. F. (1961). Distribution and deposition of the inhaled particles in respiratory tract. Bacteriological Reviews, 25(3), 237–40.

    MathSciNet  Google Scholar 

  27. Stuart, B. O. (1973). Deposition of inhaled aerosols. Archives of Internal Medicine, 31(1), 60–73.

    Article  Google Scholar 

  28. Volodkin, D. V., Petrov, A. I., Prevot, M., Sukhorukov, G. B. (2004). Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir, 20(8), 3398–406.

    Article  Google Scholar 

  29. Soane, R., Frier, M., Perkins, A., Jones, N., Davis, S., Illum, L. (1999). Evaluation of the clearance characteristics of bioadhesive systems in humans. International Journal of Pharmaceutics, 178(1), 55–65.

    Article  Google Scholar 

  30. Kreuter, J., Shamenkov, D., Petrov, V., Ramge, P., Cychutek, K., Koch-Brandt, C., et al. (2002). Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. Journal of Drug Targeting, 10(4), 317–25.

    Article  Google Scholar 

  31. Roldungin VI (2008). Physical chemistry of the surfaces: a textbook—monography. Dolgoprudny: Publishing House «Intellect»; p. 568.

  32. Ariga, K., Lvov, Y. M., Kawakami, K., Ji, Q., Hill, J. P. (2011). Layer-by-layer self-assembled shells for drug delivery. Advanced Drug Delivery Reviews, 63(9), 762–71.

    Article  Google Scholar 

  33. Washington, N., Steele, R. J., Jackson, S., Bush, D., Mason, J., Gill, D., et al. (2000). Determination of baseline human nasal pH and the effect of intranasally administered buffers. International Journal of Pharmaceutics, 198(2), 139–46.

    Article  Google Scholar 

  34. Jones, N. (2001). The nose and paranasal sinuses physiology and anatomy. Advanced Drug Delivery Reviews, 51(1–3), 5–19.

    Article  Google Scholar 

  35. Shutava, T. G., Pattekari, P. P., Arapov, K. A., Torchilin, V. P., Lvov, Y. M. (2012). Architectural layer-by-layer assembly of drug nanocapsules with PEGylated polyelectrolytes. Soft Matter, 8(36), 9418.

    Article  Google Scholar 

  36. Matthies, B. K., & Franklin, K. B. J. (1995). Effects of partial decortication on opioid analgesia in the formalin test. Behavioural Brain Research, 67(1), 59–66.

    Article  Google Scholar 

  37. Rosland, J. H., Tjølsen, A., Mæhle, B., Hole, K. (1990). The formalin test in mice: effect of formalin concentration. Pain, 42(2), 235–42.

    Article  Google Scholar 

  38. Borodina, T., Markvicheva, E., Kunizhev, S., Möhwald, H., Sukhorukov, G. B., Kreft, O. (2007). Controlled release of DNA from self-degrading microcapsules. Macromolecular Rapid Communications, 28(18–19), 1894–9.

    Article  Google Scholar 

  39. Matthies, B. K., & Franklin, K. B. J. (1992). Formalin pain is expressed in decerebrate rats but not attenuated by morphine. Pain, 51(2), 199–206.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the group of Prof. N.V. Gulyaeva (Functional Biochemistry of the nervous system Lab) for the performing of the in vivo experiments in the Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences. This study was performed using the equipment of the Shared Research Center of the Institute of Crystallography of the Russian Academy of Sciences and partially funded by the Russian Foundation for Basic Research and Moscow city Government according to the research project no. 15-33-70032 «mol_a_mos».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Trushina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodina, T.N., Trushina, D.B., Marchenko, I.V. et al. Calcium Carbonate-Based Mucoadhesive Microcontainers for Intranasal Delivery of Drugs Bypassing the Blood–Brain Barrier. BioNanoSci. 6, 261–268 (2016). https://doi.org/10.1007/s12668-016-0212-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0212-2

Keywords

Navigation