Skip to main content

Advertisement

Log in

Sintering Behaviour and Mechanical Properties of Al–Cu–Mg–Si–Sn Aluminum Alloy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present study investigates the effect of compaction pressure and sintering temperature on densification response and mechanical properties of the Al–3.8Cu–1Mg–0.8Si–0.3Sn (2712) alloy. The compacts were pressed at 200 and 400 MPa and sintered at temperatures ranging from 570–630°C in vacuum (10−6 Torr). The objective of the present work is to obtain an optimum sintering conditions for achieving higher sintered densities and mechanical properties. The effect of sintering temperature is evaluated by measuring the sintered density, densification parameter, microstructure, phase changes and mechanical properties. While a higher sintering temperature results in densification enhancement, it also leads to microstructural coarsening. Significant improvement in mechanical properties is obtained through age-hardening of sintered alloy under various ageing conditions (T4, T6 and T8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hunt W H Jr., in Proc of First International Conference on Powder Metallurgy, Aluminum & Light Alloys for Automotive Applications, (eds) Jandeska W F Jr., and Chernenkoff R A, MPIF, Princeton (1998), p 1.

    Google Scholar 

  2. Apelian D, and Saha D, in Proc of Second International on Powder Metallurgy Aluminum & Light Alloys for Automotive Applications Conference, (eds) Jandeska W F Jr., and Chernenkoff R A, MPIF, Princeton (2000), p 1.

    Google Scholar 

  3. Savitskii A P, Liquid Phase Sintering of the Systems with Interacting Components, Russian Academy of Sciences, Moscow (1993).

    Google Scholar 

  4. Sercombe T B, Non-Conventional Sintered Aluminum Powder Alloys, Ph.D. Thesis, The University of Queensland, Australia (1998).

  5. Schaffer G B, Hall B J, Bonner S J, Huo S H, and Sercombe T B, Acta Mater 54 (2006) 131.

    CAS  Google Scholar 

  6. Falticeanu C L, Chang I T H, Kim J S, and Cook R, Mater Sci Forum 534536 (2007) 597.

    Article  Google Scholar 

  7. Schaffer G B, Sercombe T B, and Lumley R N, Mater Chem Phys 67 (2001) 85.

    Article  CAS  Google Scholar 

  8. Savitskii A P, and Martsunova L S, Porosh Metall 5 (1977) 14.

    Google Scholar 

  9. Lumley R N, and Schaffer G B, Scripta Mater 35 (1996) 589.

    Article  CAS  Google Scholar 

  10. Martin J M, and Castro F, J Mater Process Technol 143144 (2003) 814.

    Article  Google Scholar 

  11. Liu Z Y, Sercombe T B, and Schaffer G B, Metall Mater Trans A 38 (2007) 1351.

    Article  Google Scholar 

  12. Min K H, Kang S P, Lee B H, Lee J K, and Kim Y D, J Alloys Compd 419 (2006) 290.

    Article  CAS  Google Scholar 

  13. Sundaresan R, and Ramakrishna P, Int J Powder Metall Powder Technol 14 (1978) 9.

    CAS  Google Scholar 

  14. Kehl W, and Fischmeister H F, Powder Metall 23 (1980) 113.

    CAS  Google Scholar 

  15. Lumley R N, and Schaffer G B, Scripta Mater 39 (1998) 1089.

    Article  CAS  Google Scholar 

  16. Sercombe T B, and Schaffer G B, Acta Mater 47 (1999) 689.

    Article  CAS  Google Scholar 

  17. Sercombe T B, and Schaffer G B, Mater Sci Eng A 268 (1999) 32.

    Article  Google Scholar 

  18. Dudas J H, and Thompson C B, Modern. Develop. Int Powder Metall 5 (1971) 19.

    CAS  Google Scholar 

  19. Bonner S J, Sintering of an Aluminum Alloy under Pressurized Conditions, M.S. Thesis, The University of Queensland, Australia (2009).

  20. Davies B L, and Farzin-Nia, Int J Powder Metall Powder Technol 19 (1983) 197.

    Google Scholar 

  21. Kent D, Schaffer G B, and Drennan J, Mater Sci Eng A 405 (2005) 65.

    Article  Google Scholar 

  22. Durmus H K, and Meric C, Mater Design 28 (2007) 982.

    Article  CAS  Google Scholar 

  23. Padmavathi C, Liquid Phase Sintering of 2712, 6711 and 7775 Aluminum Alloy and Their Properties, Ph.D Thesis, Indian Institute of Technology, India (2010).

  24. Wagner C D, and Muilenberg G E, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, New York (1979).

    Google Scholar 

  25. MPIF Standard 41: Determination of Transverse Rupture Strength of Sintered Metal Powder Test Specimens, Standard Test Methods for Metal Powders and Powder Metallurgy Products, Metal Powder Industries Federation, Princeton (2002), p 55.

  26. MPIF Standard 10: Tension Test Specimens for Pressed and Sintered Metal Powders, Standard Test Methods for Metal Powders and Powder Metallurgy Products, Metal Powder Industries Federation, Princeton (2002).

  27. German R M, Powder Metallurgy Science, MPIF, Princeton (1994), p 241.

    Google Scholar 

  28. Anderson I E, and Foley J C, Surface Interface Analysis 31 (2000) 599.

    Article  Google Scholar 

  29. German R M, Sintering Theory and Practice, Wiley, New York (1996).

    Google Scholar 

  30. German R M, Liquid Phase Sintering, Plenum Press, New York (1985).

    Google Scholar 

  31. Kauffman J G (ed), Properties of Aluminum Alloys: Tensile Creep and Fatigue Data at High and Low Temperatures, ASM International, Materials Park (1999), p 305.

    Google Scholar 

  32. Martin J M, and Castro F, Proc of Euro PM 2001 Light Alloys, EPMA, Shrewsbury (2001), p 177.

    Google Scholar 

  33. Martin J M, and Castro F, Mater Sci Forum 426432 (2003) 107.

    Article  Google Scholar 

  34. Schaffer G B, Yao J Y, Bonner S J, Crossin E, Pas S J, and Hill A J, Acta Mater 56 (2008) 2615.

    Article  CAS  Google Scholar 

  35. Savitskii A P, and Romanov G N, Porosh Metall 26 (1987) 532.

    Google Scholar 

  36. Schaffer G B, and Hall B J, Metall Mater Trans A 33 (2002) 3279.

    Article  Google Scholar 

  37. Lumley R N, Sercombe T B, and Schaffer G B, Metall Mater Trans A 30 (1999) 457.

    Article  Google Scholar 

  38. McLeod A D, and Gabryel C M, Metall Trans A 23 (1992) 1279.

    Article  Google Scholar 

  39. Kondoh K, Kimura A, and Watanabe R, Powder Metall 44 (2001) 161.

    Article  CAS  Google Scholar 

  40. Gao X, Nie J F, and Muddle B C, Mater Sci Forum 217–222 (1996) 1251.

    Article  Google Scholar 

  41. Davis J R (ed), Aluminum and Aluminum Alloys, Third ed., ASM International, Ohio (1993).

    Google Scholar 

  42. Jha A K, Sintering of 2014 Al-alloy Based Powder Metallurgical Particulate Composites, M.Tech, IIT Kanpur, India (1983).

    Google Scholar 

  43. Delarbre P, and Krehl M, Proc of Second International Conference on Powder Metallurgy Aluminum & Light Alloys for Automotive Applications, (eds) Jandeska W F Jr., and Chernenkoff R A, MPIF, Princeton (2000), p 33.

    Google Scholar 

  44. Romero A, Proc of First International Conference on Powder Metallurgy, Aluminum & Light Alloys for Automotive Applications, (eds) Jandeska W F Jr., and Chernenkoff R A, MPIF, Princeton (1998), p 51.

    Google Scholar 

  45. Dudas L, and Dean W A, Int J Powder Metall 5 (1969) 113.

    Google Scholar 

  46. ASM Metal Reference book, ASM, Metals Park, OH (1983), p 293.

  47. Takeda Y, Kaji T, Kondoh K, and Hattori H, Proc of Powder Metallurgy Aluminum & Light Alloys for Automotive Applications Conference, (eds) Jandeska W F Jr., and Chernenkoff R A, MPIF, Princeton (1998), p 19.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Jessu Joys of AMPAL Inc., Palmerton, USA for providing the 2712 aluminum alloy powders for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Padmavathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmavathi, C., Upadhyaya, A. Sintering Behaviour and Mechanical Properties of Al–Cu–Mg–Si–Sn Aluminum Alloy. Trans Indian Inst Met 64, 345–357 (2011). https://doi.org/10.1007/s12666-011-0089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-011-0089-2

Keywords

Navigation