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Abstract

A 2D phase-field model has been developed in order to describe the morphology of a pore forming within interdendritic liquid channels and
the geometrical effect of mechanical contacts with neighboring solid. The distribution of the solid, liquid and gas phases is calculated with
a multiphase-field approach which accounts for the pressure difference between the liquid and gas phases, as well as diffusion of dissolved gases
in the liquid. The model incorporates the perfect gas and Sievert’s laws to describe the concentration and partitioning of gas molecules or
atoms at the pore/liquid interface. The results show that the presence of solid can substantially influence the volume and pressure of the pore.
A pore constrained to grow in narrow liquid channels exhibits a substantially higher mean curvature, a larger pressure and a smaller volume

as compared with a pore grown under unconstrained conditions.

Introduction

Microporosity is one of the major defects encountered in
solidification processes. The presence of micropores can
considerably reduce the mechanical properties of a cast
material, in particular the fatigue life and the ultimate tensile
strength [1]. The basic mechanisms responsible for the
formation of micropores are well established. Solidification
shrinkage plays naturally a key role. If shrinkage cannot be
compensated by liquid flow in the mushy zone due to limited
permeability, large pressure drops will develop and lead to
the formation of pores. Gas dissolved in the liquid metal,
such as hydrogen in aluminum alloys, can substantially
contribute or even govern the formation of micropores. Due
to a lower solubility in the solid phase, gas concentrate in
the remaining liquid as solidification proceeds and may reach
the critical concentration for the nucleation of a bubble.
Once a pore has nucleated, it becomes a sink for the gas
supersaturated in the liquid phase and it will grow until
thermodynamic equilibrium is reached.

Modeling the formation of porosity in castings has been
a subject of research for several decades. The reader is
invited to refer to the review article of Lee et al. [2]. State-
of-the-art computer models describing the formation of
microporosity on the scale of the casting process are based
on volume-averaging methods for the calculation of the local
temperature and pressure fields in the interdendritic liquid.
These quantities are then used to estimate the level of gas
segregation and to determine if conditions for the nucleation
of a pore are met. After nucleation, the growth rate of the
pores is calculated by solving a hydrogen mass balance.

One aspect that has not previously been examined is the
effect of pore morphology, and more specifically, the radius
of curvature which directly influences the gas pressure in the

pore. As pores usually develop at high volume fractions of
solid, they adopt complex shapes due to numerous contacts
with neighboring dendrites arms. Only limited studies have
been devoted so far to this effect, although it is potentially
important. Direct observations by X-ray tomography have
shown that the mean curvature can be larger than 0.2 ptm'l,
which corresponds to a Laplace — Young overpressure of
more than 400 kPa [3]. A preliminary phase-field approach for
a numerical description of the morphology of a pore
constrained by a dendritic network was also presented in [3].
One of the limitations of this study was the fact that the
influence of the solid was taken into account through the
geometry of the calculation domain, which contained only
liquid and gas phases, but was considered to be surrounded
by solid. With such a method, only simple solid shapes
could be described since the solid/liquid or solid/gas
interfaces had to correspond to the boundaries of the
orthogonal calculation grid. The present work is an extension
of the approach presented in [3] based on a multiphase-field
formulation. The method allows for a description of
micropores constrained in a solid network having a more
realistic shape.

Model

A multiphase field model has been developed in order to
describe the shape of a pore forming within an interdendritic
liquid channel and the geometrical effect of mechanical
contacts with neighboring solid. The problem is solved in a
domain that is representative of a small section of a dendritic
network. The presence of solid, liquid and pores is described
through the phase-field variables ¢;, ¢, ¢,, which can be
understood as local volume fractions. These variables are
linked together by the condition ¢+¢+¢, = 1.



The evolution of the phase-field variables is calculated
by solving the following equations:
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where p,, is the pressure in the pore, p; is the pressure in the
liquid, Asy is the entropy of melting, and AT is the
undercooling. The parameters i, Wi, Oy, and ¥y correspond
respectively to the interface mobility coefficient, the double-
well height, the interface thickness and the interfacial energy
of the interface between phases i and k.

These equations are similar to the multiphase-field model
of solidification of [4]. A noteworthy difference is the form
of the polynomial expressions used for the double well and
driving force terms, which have been modified to avoid the
systematic presence of the third phase in the interfaces. For
¢; = 0 and V¢; = 0, Equation 1 yields ¢; = 0, whatever ¢; and
o (j and k#i), which is the mathematical condition to be
satisfied for phase i not appearing spontaneously in a j/k
interface.

Another aspect to be mentioned is the driving force for
the liquid/pore transformation, which is given by the pressure
difference between the interior of the pore and the
surrounding liquid (Eq. 2b). This expression can be justified
by solving the steady-state form of Eq. 1 in cylindrical
coordinates for a system composed of a single pore
surrounded by liquid. By doing so, one can show that the
Laplace pressure condition, p;, - p; = 2y, / rp, Where r,, is the
pore radius, is recovered.

In this preliminary approach, the growth kinetics are
assumed to be governed by hydrogen diffusion in the liquid,
which, as pointed out by Lee and Carlson [5,6], can be the
limiting factor. (Hereafter the gas responsible for porosity
will always be referred to as hydrogen, although the model
could apply to other systems as well). A local volumetric
molar concentration of hydrogen is introduced based on an
averaging procedure and considering the phase-field
variables as local volume fractions:
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where c,C, and <, are volumetric molar concentrations of
hydrogen in the solid, liquid and gas, respectively.

Assuming thermodynamic equilibrium at the interface,
¢ and ¢, can be expressed as a function of p;, using Sievert’s
law:
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where S; and S; are the Sievert’s constants (in atomic
moles/m3) for the solid and liquid, respectively, and p is the
standard pressure. Introducing also the perfect gas law,
Eq. 4 can be rewritten as:
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A hydrogen conservation equation is then solved,
neglecting any hydrogen concentration gradient in the gas
phase and any hydrogen transport in the liquid due to flow:
H
% =V-(¢./'Ve! +¢D/'Ve') ™
The resolution of Eqs 1 and 7 is performed using a finite
difference method and an explicit time-discretization scheme.
At each time-step, the solution of Eq. 7 is used to calculate
the driving force terms of the phase equations. This requires
solving the second order polynomial expression of Eq. 6 to
obtain p, from cH. An averaging procedure eliminating any
concentration gradient in the pore is applied at every time-
step. To ensure numerical stability, the time-step is determined
so as to satisfy the Fourier condition of both Eqs 1 and 7,
using a Fourier number of 0.1 rather than 1/4: DAt/h2<0.1,
M, 5 At/h2<0.1, where h is the mesh size.

Results and Discussion

A first test was carried out in order to verify the capability
of the model to correctly calculate the pressure and the
radius of a spherical pore for a given set of conditions in
terms of hydrogen content in the calculation domain, cy,
hydrogen solubility, S;, and liquid pressure, p;. The
calculation was performed in a 2D square domain containing
only liquid except for a small pore of arbitrary radius located
at the center. No solid was considered in this first test. Once
steady state was reached, the pore radius, Tp, and the pore
pressure, p,, were compared with the analytical solution
obtained by solving the following set of equations:
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where 7, is the equilibrium radius of the circular pore and
Veomp is the volume of the calculation domain.
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Table 1 summarizes the different parameters used in the
calculation. The calculation was started with an initial pore
size about 10 times smaller than r,,. In the initial state, the
liquid is supersaturated in hydrogen. The pore is thus
expected to grow.

Table 1: parameters used in the phase-field calculations.

Parameter, unit Numerical Value

Mesh size [m] 2.5x10°8
& [m] 2.0x1077
. . 2 -10

Veomp (Without solid) [m=] 1.5x10

po [Pa] 101325

py [Pa]] 101325

T [K] 1000

M, [m?s/kg] 1x107

D, [m%/s] 1x10°6

S; [mol/m] 0.69

7 [3/m?] 0.8

Yy [3/m?] 0.8

¥ [J/m?] 0.4

colmol m] 20.0

Typical CPU time 20 h

1.4E+06 1 T 3.5E-06

1.2E+06 »_pore (PHF) T 3.0E-06

1.0E+06 1| T T ppore (analyt) + 2.5E-06
= ’ r_pore (PHF) ’ _
< 5.08+05 | r_pore (analyt.) 12006 =
g £
- 6.0E+05 T 1.5E-06 @
5 £

40B+05 { S~ - 1.0E-06

2.0E+05 1 T 5.0E-07

0.0E+00 ‘ ‘ ‘ ‘ 0.0E+00

0.0E+00  4.0E-07  8.0E-07 12E-06 1.6E-06  2.0E-06
Time [s]
Fig. 1 : Radius and pressure of a circular 2D pore calculated with

the phase-field model (PHF) and with the analytical
solution for a hydrogen solubility in the liquid of
Sl = 0.69 mol/m3 and an overall hydrogen content, Cyr
of 20 mol/m3.

Fig. 2
and 2.5 pum.
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As can be seen in Fig. 1, the pore radius calculated with
the phase-field model increases rapidly, whereas its pressure
globally decreases, until a steady-state is reached at a time
of about 1x107® s. Both the pressure and the radius of the
pore stabilize very close to the analytical solution. Similar
calculations started with different pore radii, either larger or
smaller than r., yielded the same steady state solution.
Thus, the phase-field model is capable of correctly describing
a bubble in equilibrium with its surrounding liquid, satisfying
simultaneously the mechanical and chemical equilibrium
conditions.

The transient regime of the calculation corresponds to
the time required to homogenize the hydrogen concentration
in the liquid. Although hydrogen diffusion can be the limiting
factor for pore growth, the transient regime of the simulation
cannot be exploited quantitatively in this preliminary
approach. The reason is that the liquid flow induced by the
expansion of the bubble, and thereby hydrogen transport by
convection, are not considered in the simulation. For this
reason only the steady state solutions of the simulation will
be analyzed hereafter.

The model was then used to investigate the morphology
and the pressure in a pore growing under the constraint of
a surrounding solid. The calculations were performed in 2D
domains containing a series of liquids channel separated by
dendrites arms (see Fig. 2). Each solid structure is
characterized by a different dendrite arm spacing, A = 2.5,
3.75 or 5 pm. The widths of the liquid channels where the
pore can grow are proportional to A. In this preliminary work,
only the evolution of the liquid/gas interface was considered
and the hydrogen solubility in the solid was ignored. The
parameters My, My, D and S; were therefore set to zero.
As the solid is considered as inert, the calculation were
carried out using identical volumes of liquid, and a nominal
concentration of ¢y = 20 atomic mol/m? in the liquid prior to
pore nucleation.

The calculations were initialized with a relatively small
pore located at the center of the calculation domain and
without any contact with the solid. Since the liquid is
supersaturated in hydrogen, the pore grows until equilibrium
is reached. The initial shape, some transient state and the
final shapes of the pore are shown in Fig. 2 for the three
different arm spacings, A. As can be seen the pore develops
in a non-symmetric way, and may move to a more open space
in order to reduce its curvature and thereby its internal
pressure.

The pressure, the mean radius of curvature (which is
averaged over the liquid/pore interfaces only) and the

equivalent radius of the pore (which is defined as (/4,/n

: Initial (black circle), transient (dotted line) and equilibrium (grey/orange fill) pore shapes for different arm spacings, 1 = 5, 3.75
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Fig. 3 : Effect of dendrite arm spacing on pore pressure and

pore radii calculated with the phase-field model. The
dashed lines represent the pressure and the volume of an
unconstrained pore for the same conditions.

where A, is the area of the pore) were extracted from the
calculations for the final state and are presented in Fig. 3. As
can be seen, a smaller dendrite arm spacing leads to a higher
pressure, a smaller radius of curvature and a lower pore
volume (i.e. smaller equivalent radius), as compared with a
less constrained pore. This effect is directly related to the
fact that the growth of a pore inside a narrow liquid channel
requires highly curved gas/liquid interfaces in order to satisfy
the mechanical equilibrium at the s/I/p triple junctions, which
is defined by the interfacial energies ¥, Ysp, and ¥j,. The
pressure is consequently larger in such pores since the
Laplace - Young equation has to be satisfied.

In the calculations shown here the influences of the solid
morphology on the volume fraction and the morphology of
the pores is substantial. By dividing the liquid channel width
by a factor 2, the pressure raises and the equivalent radius
drops by a similar factor. The magnitude of this effect is
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naturally linked to the fact that the channel widths used in
the calculations are rather small. However such narrow liquid
channels are not unrealistic at the end of solidification.

Conclusion

A 2D phase field model has been developed in order to
describe the morphology of a pore forming within
interdendritic liquid channels and the geometrical effect of
mechanical contacts with neighboring solid. The results show
that the presence of solid can substantially influence the
volume and pressure of the pore. A pore constrained to grow
in narrow liquid channels exhibits a larger pressure, and a
smaller volume as compared with a pore grown under
unconstrained conditions due to a higher mean curvature.

Although the model accounts for hydrogen diffusion in
the liquid, which is one of the main aspects governing the
growth kinetics of a pore, this approach does not allow at
this stage to correctly describe the dynamics of pore
formation. To do so, the model should be combined with a
description of the liquid flow induced by the pore growth.
This would permit to properly take into account the effect of
hydrogen transport by convection. In order to make a more
quantitative investigation of the influence of the solid on the
pore morphology the approach should be extended to 3D
and the evolution of the solid/liquid interface should be
considered.
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