Skip to main content
Log in

Evaluating asbestos fibre concentration in metaophiolites: a case study from the Voltri Massif and Sestri–Voltaggio Zone (Liguria, NW Italy)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This work is part of the project study for a road tunnel bypassing the town of Genova and was aimed at evaluating the amount of asbestos fibres in the metaophiolites belonging to the Voltri Group and the Sestri–Voltaggio Zone (Liguria, Northern Italy). The 85 studied rock samples (mainly mafic and ultramafic rocks) derive from exposed outcrops and prospecting boreholes. The study of field relations and petrographic/microtextural investigations under the optical microscope allowed for the identification and characterisation of asbestos-bearing settings and lithotypes. Mineralogy and concentration of asbestos fibres in powdered specimens were determined by means of a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy device. These investigations were combined with petrography on thin-section, X-ray diffraction analysis and phase contrast optical microscopy on rock powders. Mafic and ultramafic rocks commonly contain asbestos in concentrations below 1,000 mg/kg (considered as the contamination threshold under Italian law). However, the fibre concentration rises abruptly within localised zones, where the metaophiolite sequences were involved into late ductile to brittle tectono-metamorphic events. Two groups of asbestos-bearing settings have been so far identified in the area: (a) fracture networks within serpentinites (dominated by fibrous chrysotile), and (b) boudins of chlorite-tremolite schists, likely deriving from dynamic recrystallisation of mafic rocks under greenschist facies conditions (dominated by fibrous amphibole). Even considering the low volumetric incidence of these settings (metres to few tens of metres), their high asbestos content locally controls the total fibre amount in the excavation products, thus requiring special prevention measures during excavation, management and final storage of the contaminated debris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alt JC, Shanks WC (2006) Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism. Earth Planet Sci Lett 242:272–285

    Article  Google Scholar 

  • Bariş YI, Artvinli M, Sahin AA, Bilir N, Kalyoncu F, Sebastien P (1988) Non occupational asbestos related chest disease in a small Anatolian village. Br J Ind Med 45:841–842

    Google Scholar 

  • Belluso E, Compagnoni R, Ferraris G (1995) Occurrence of asbestiform minerals in the serpentinites of the Piemonte zone, western Alps. “Giornata di studio in ricordo del Prof. Stefano Zucchetti”, Politecnico di Torino, Dip. to Georisorse e Territorio, 12 Maggio 1994, Contribution volume, 57–66, Tipolitografia Edicta, Torino

  • Browne K, Wagner JC (2001) Environmental exposure to amphibole-asbestos and mesothelioma. In: Nolan RP, Langer AM, Ross M, Wicks FJ, Martin RF (eds) The health effects of chrysotile asbestos: contribution of science to risk-management decisions. The Canadian Mineralogist Special Publication 5, pp 21–28

  • Capponi G, Crispini L (1990) Chloritoid bearing assemblages in metagabbros from the Erro–Tobbio Unit (Voltri Massif, Ligurian Alps): preliminary data. Ofioliti 15(2):327–332

    Google Scholar 

  • Capponi G, Crispini L (2002) Structural and metamorphic signature of alpine tectonics in the Voltri Massif (Ligurian Alps, northwestern Italy). Ecl Geol Helv 95:31–42

    Google Scholar 

  • Capponi G, Crispini L, Scambelluri M (2009) Comment on “Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy”, by Vignaroli G, Faccenna C, Jolivet L, Piromallo C, Rossetti F. Tectonophys 465:221–226

    Article  Google Scholar 

  • Cardile V, Lombardo B, Belluso E, Panico A, Capella S, Balazy M (2007) Toxicity and carcinogenicity mechanisms of fibrous Antigorite. Int J Environ Res Public Health 4(1):1–9

    Article  Google Scholar 

  • Compagnoni R, Fiora L (1983) Balangeroite, a new fibrous silicate related to gageite from Balangero Italy. Am Mineral 6:214–219

    Google Scholar 

  • Compagnoni R, Groppo C (2006) Gli amianti in Val di Susa e le rocce che li contengono, Rend Soc Geol Ital 3, Nuova Serie, 21–28

  • Compagnoni R, Sandrone R, Zucchetti S (1980) Some remarks on the asbestos occurrences in the Western Alps with special reference to the chrysotile asbestos deposit of Balangero (Valle di Lanzo, Piemonte, Italy). Fourth Conference on Asbestos, Torino (Italy) 20–30 May 1980. Preprint, 1:49–71

  • Cortesogno L, Haccard D (1984) Note illustrative alla Carta geologica della zona Sestri–Voltaggio. Mem Soc Geol Ital 28:115–150

    Google Scholar 

  • Crispini L (1995) La zona Sestri–Voltaggio. In: Polino R, Sacchi R (eds) Atti del convegno “Rapporti Alpi-Appennino”. Accademia Nazionale delle Scienze XL 14:568–593

  • Crispini L, Capponi G (2001) Tectonic evolution of the Voltri Group and Sestri–Voltaggio Zone (southern limit of the NW Alps): a review. Ofioliti 26(2a):161–164

    Google Scholar 

  • Dearwent S, Imtiaz R, Metcalf S, Lewin M (2000) Health consultation: mortality from asbestosis in Libby, Montana. Agency for Toxic Substances and Disease Registry. See http://www.atsdr.cdc.gov/HAC/pha/libby/lib_toc.html. Accessed 12 Dec 2000

  • Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506

    Article  Google Scholar 

  • Gavett SH (2006) Physical characteristics and health effects of aerosols from collapsed buildings. J Aeros Med 19:84–91

    Article  Google Scholar 

  • Gianfagna A, Ballirano P, Bellatreccia F, Bruni B, Paoletti L, Oberti R (2003) Characterization of amphibole fibres linked to mesothelioma in the area of Biancavilla, Eastern Sicily, Italy. Min Mag 67:1222–1229

    Article  Google Scholar 

  • Groppo C, Compagnoni R (2007) Ubiquitous fibrous antigorite veins from the Lanzo Ultramafic Massif, Internal Western Alps (Italy): characterisation and genetic conditions. Per Mineral 76:169–181

    Google Scholar 

  • Groppo C, Tomatis M, Turci F, Gazzano E, Ghigo D, Compagnoni R, Fubini B (2005) Potential toxicity of nonregulated asbestiform minerals: Balangeroite from the Western Alps. Part 1. Identification and characterization. J Tox Environ Health A 68:1–19

    Article  Google Scholar 

  • Gunter ME, Belluso E, Mottana A (2007) Amphiboles: environmental and health concerns. Rev Min Geochem 67:453–516. doi:10.2138/rmg.2007.67.12

    Google Scholar 

  • Guthrie GD, Mossman BT (eds) (1993) Health effects of mineral dusts. Mineralogical Society of America, Washington, DC, Rev Min 28:584

  • Hoogerduijn Strating EH (1994) Extensional faulting in an intraoceanic subduction complex- working hypothesis for the Paleogene of the Alps-Apennine system. Tectonophys 238:255–273

    Article  Google Scholar 

  • Kamp DW, Weitzman SA (1999) The molecular basis of asbestos induced lung injury. Thorax 54:638–652

    Article  Google Scholar 

  • Lanfranchi P (2008) Wiederverwertung von Tunnelausbruchmaterial von CBT. AlpTransit Sottoceneri Geotechnik. Mitt. Schweiz. Gesellsch. für Boden- und Felsmechanik, 156, Lugano, Frühjahrstagung 25.04.2008

  • Maddalon G, Patroni M, Peruzzo GF, Trimarchi R, Cavallo DM (2001) Caratterizzazione di polveri e fibre aerodisperse con particolare riguardo alla silice ed agli amianti. Med Lav 92, 6 Suppl, p 147

    Google Scholar 

  • Messiga B, Scambelluri M, Piccardo GB (1995) Chloritoid-bearing assemblages in mafic systems and eclogite-facies hydration of alpine Mg–Al metagabbros (Erro–Tobbio Unit, Ligurian Western Alps). Eur J Mineral 7(5):1149–1167

    Google Scholar 

  • Pawloski GA (1985) Quantitative determination of mineral content of geological samples by X-ray diffraction. Am Mineral 70:663–667

    Google Scholar 

  • Perello P, Venturini G (2006) Scavo di gallerie in ammassi rocciosi contenenti minerali asbestiformi. Gallerie e grandi opere sotterranee 70:58–64

    Google Scholar 

  • Snyder RL, Bish DL (1989) Quantitative analysis. In: Bish DL, Posts JE (eds) Modern powder diffraction. Mineralogical Society of America Rev Min 201:101–144

  • Thalmann C (1996) Beurteilung und Möglichkeiten der Wiederverwertung von Ausbruchmaterial aus dem maschinellen Tunnelvortrieb zu Betonzuschlagstoffen. Beitr Geol Schweiz Geotechn Serie 91:115

    Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction related magmatism. Science 268:858–861

    Article  Google Scholar 

  • Van Gosen BS, Lowers HA, Sutley SJ, Gent CA (2004) Using the geologic setting of talc deposits as an indicator of amphibole asbestos content. Environ Geol 45:920–939

    Article  Google Scholar 

  • Vanossi M, Cortesogno L, Galbiati B, Messiga B, Piccardo GB, Vannucci R (1984) Geologia delle Alpi Liguri: dati, problemi, ipotesi. Mem Soc Geol Ital 28:42–65

    Google Scholar 

  • Vignaroli G, Faccenna C, Rossetti F (2008a) Retrogressive fabric development during exhumation of the Voltri Massif (Ligurian Alps, Italy): arguments for an extensional origin and implications for the Alps–Apennines linkage. Int J Earth Sci. doi:10.1007/s00531-008-0305-4

  • Vignaroli G, Faccenna C, Jolivet L, Piromallo C, Rossetti F (2008b) Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy. Tectonophys 450:34–50

    Google Scholar 

  • Vignaroli G, Faccenna C, Jolivet L, Piromallo C, Rossetti F (2009) Reply to the comment by G. Capponi et al. on “Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy”, by G. Vignaroli et al. (Tectonophys 2008, 450:34–50). Tectonophys 465:227–231

    Google Scholar 

  • Wagner TC, Sleggs CA, Marckand P (1960) Diffuse pleural mesothelioma and asbestos exposure in north western Cape Province. Br J Ind Med 17:160–171

    Google Scholar 

  • Wicks FJ (2000) Status of the reference X-ray powder-diffraction patterns for the serpentine minerals in the PDF database—1997. Powder Diffr 15(1):42–50

    Google Scholar 

  • Wicks FJ, O’Hanley DS (1988) Serpentine minerals: structures and petrology In Bailey, SW Hydrous phyllosilicates (exclusive of micas). Min Soc Am Rev Min 19:91–167

    Google Scholar 

  • Zamengo L, Barbiero N, Gregio M, Orru’ G (2009) Combined scanning electron microscope and image analysis to investigate airborne submicron particles. A comparison between personal samplers. Chemosphere 76(3):313–323

    Article  Google Scholar 

Download references

Acknowledgments

The Authors would like to thanks D. M. Cavallo and A. Cattaneo (University of Insubria) for performing the XRD analyses and diffraction patterns interpretation. S. Tallone and G. Spagnolo (CNR, IGG Torino) are kindly acknowledged for the support on the field and the collection and interpretation of the large part of structural data. The SEM–EDS analyses have beneficiated of the valuable technical support of M. Palenzona. Thanks are due to G. C. Capitani for the constructive discussions about serpentine polymorphs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folco Giacomini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giacomini, F., Boerio, V., Polattini, S. et al. Evaluating asbestos fibre concentration in metaophiolites: a case study from the Voltri Massif and Sestri–Voltaggio Zone (Liguria, NW Italy). Environ Earth Sci 61, 1621–1639 (2010). https://doi.org/10.1007/s12665-010-0475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-010-0475-9

Keywords

Navigation