Skip to main content
Log in

Experimental Study and Thermodynamic Modelling of High Temperature Interactions Between Molten Miscanthus Ashes and Bed Particles in Fluidized Bed Reactors

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This paper presents an experimental and thermodynamic contribution about the role of inorganics in ash-bed material interactions during thermal conversion of miscanthus in fluidized bed. The objectives are (1) to describe the transformation of inorganics at high temperature, (2) to reveal their role in the agglomeration and (3) to provide recommendations for miscanthus gasification in fluidized bed. The main ash forming elements in miscanthus are K, Si, Ca, Mg, P, S and Cl. The ashes are composed of silica, carbonates and salts. The carbonates and salts decompose and volatilise at 700 °C. At elevated temperature, the dominant solid phases are Ca and Mg silicates. The liquid phase is composed of SiO2, K2O, CaO, MgO regardless of the atmosphere. The accuracy of thermodynamic prediction tool is evaluated with the experimental results. The ash-bed interactions show that the wetting of bed material by molten ashes is one of the key parameters of the agglomeration. The adhesion of particles increases in the order of silica sand, olivine, calcined olivine. There is no significant difference in the agglomeration mechanism in oxidizing or reductive atmosphere. However, in reductive atmosphere, two immiscible liquid phases can occur. The parametric investigation shows that the operating temperature has a significant effect on the agglomeration ratio and the addition of kaolin or dolomite is the most effective tool to reduce agglomeration risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Heaton, E.A., Dohleman, F.G., Miguez, A.F., Juvik, J.A., Lozovaya, V., Widholm, J., Zabotina, O.A., Mcisaac, G.F., David, M.B., Voigt, T.B., Boersma, N.N., Long, S.P.: Miscanthus†¯: A Promising Biomass Crop Biology. Adv. Bot. Res. 56, 75–137 (2010)

    Article  Google Scholar 

  2. Basu, P.: Biomass Gasification and Pyrolysis: Gasification Theory and Modelling of Gasifiers. Chapter 3 Pyrolysis and Torrefaction. © 2010 Elsevier Inc. (2010)

  3. Liliedahl, T., Sjöström, K., Engvall, K., Rosén, C.: Defluidisation of fluidised beds during gasification of biomass. Biomass Bioenergy. 35, S63–S70 (2011)

    Article  Google Scholar 

  4. Olofsson, G., Ye, Z., Bjerle, I., ersson, A.: Bed agglomeration problems in fluidized-bed biomass combustion. Ind. Eng. Chem. Res. 41, 2888–2894 (2002)

    Article  Google Scholar 

  5. Lin, W., Dam-Johansen, K., Frandsen, F.: Agglomeration in bio-fuel fired fluidized bed combustors. Chem. Eng. J. 96, 171–185 (2003)

    Article  Google Scholar 

  6. Li, S., Shang, L., Teng, H., Lu, Q.: A model for agglomeration in bio-fuel fired fluidized bed. J. Therm. Sci. 19, 451–458 (2010).

    Article  Google Scholar 

  7. Andrea Jordan, C., Akay, G.: Speciation and distribution of alkali, alkali earth metals and major ash forming elements during gasification of fuel cane bagasse. Fuel. 91, 253–263 (2012)

    Article  Google Scholar 

  8. Zhang, Y., Ashizawa, M., Kajitani, S., Miura, K.: Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars. Fuel. 87, 475–481 (2008)

    Article  Google Scholar 

  9. Dupont, C., Nocquet, T., Da Costa, J.A., Verne-Tournon, C: Kinetic modelling of steam gasification of various woody biomass chars: influence of inorganic elements. Bioresour. Technol. 102, 9743–9748 (2011)

    Article  Google Scholar 

  10. Bryers, R.W.: Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog. Energy Combust. Sci. 72, 29–120 (1996)

    Article  Google Scholar 

  11. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., Morgan, T.J.: An overview of the organic and inorganic phase composition of biomass. Fuel. 94, 1–33 (2012)

    Article  Google Scholar 

  12. Werkelin, J., Skrifvars, B.-J., Zevenhoven, M., Holmbom, B., Hupa, M.: Chemical forms of ash-forming elements in woody biomass fuels. Fuel. 89, 481–493 (2010)

    Article  Google Scholar 

  13. Boström, D., Skoglund, N., Grimm, A., Boman, C., Ohman, M., Brostrom, M., Backman, R.: Ash transformation Chemistry during Combustion of Biomass. Energy Fuels. 26, 85–93 (2012)

    Article  Google Scholar 

  14. Frandsen, F.J., van Lith, S.C., Korbee, R., Yrjas, P., Backman, R., Obernberger, I., Brunner, T., Jöller, M.: Quantification of the release of inorganic elements from biofuels. Fuel Process. Technol. 88, 1118–1128 (2007)

    Article  Google Scholar 

  15. Evic, N., Brunner, T., Obernberger, I.: Prediction of biomass ash melting behaviour-correlation between the data obtained from thermodynamic equilibrium calculations and simoultaneous thermal analysis (STA). 20th Eur. Biomass Conf. Exhib., Milan (2012)

  16. Lindberg, D., Backman, R., Chartrand, P., Hupa, M.: Towards a comprehensive thermodynamic database for ash-forming elements in biomass and waste combustion—Current situation and future developments. Fuel Process. Technol. (2011)

  17. Berjonneau, J., Colombel, L., Poirier, J., Pichavant, M., Defoort, F., Seiler, J.-M.: Determination of the liquidus temperatures of ashes from the biomass gazification for fuel production by thermodynamical and experimental approaches. Energy Fuels. 23, 6231–6241 (2009)

    Article  Google Scholar 

  18. Froment, K., Defoort, F., Bertrand, C., Seiler, J.M., Berjonneau, J., Poirier, J.: Thermodynamic equilibrium calculations of the volatilization and condensation of inorganics during wood gasification. Fuel. 107, 269–281 (2013)

    Article  Google Scholar 

  19. Li, H., Yoshihiko, N., Dong, Z., Zhang, M.: Application of the factsage to predict the ash melting behavior in reducing conditions. Chin. J. Chem. Eng. 14, 784–789 (2006)

    Article  Google Scholar 

  20. van Dyk, J.C., Melzer, S., Sobiecki, A.: Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification – utilization of HT-XRD and FactSage modelling. Miner. Eng. 19, 1126–1135 (2006)

    Article  Google Scholar 

  21. Elled, A., Åmand, L., Steenari, B.: Composition of agglomerates in fluidized bed reactors for thermochemical conversion of biomass and waste fuels Experimental data in comparison with predictions by a thermodynamic equilibrium model. Fuel. 111, 696–708 (2013)

    Article  Google Scholar 

  22. Grimm, A., Boström, D., Lindberg, T., Fredriksson, A., Öhman, M.: Bed agglomeration characteristics during fluidized olivine bed combustion of typical biofuels. In: 19th European Biomass Conference and Exhibition, Berlin., Berlin, Germany 1345–1350 (2011)

  23. Grimm, A., Öhman, M., Lindberg, T., Fredriksson, A., Boström, D.: Bed agglomeration characteristics in fluidized-bed combustion of biomass fuels using olivine as bed material. Energy Fuels. 26, 4550–4559 (2012)

    Article  Google Scholar 

  24. Petit, M., Froment, K., Patisson, F., Seiler, J.-M., Defoort, F.: Relation between oxygen partial pressure in the syngas and inorganic releases during biomass gasification. In: 17th European Biomass Conference & Exhibition. Hambourg (2009).

  25. Zevenhoven-Onderwater, M., Backman, R., Skrifvars, B., Hupa, M.: The ash chemistry in fluidised bed gasification of biomass fuels. Part I: predicting the chemistry of melting ashes and ash-bed material interaction. Fuel. 80, 1489–1502 (2001)

    Article  Google Scholar 

  26. http://www.crct.polymtl.ca/fact/documentation/: FactSage Database Documentation.

  27. Jak, E.: Prediction of coal ash fusion temperatures with the F*A*C*T thermodynamic computer package. Fuel. 81, 1655–1668 (2002)

    Article  Google Scholar 

  28. Yazhenskikh, E., Hack, K., Müller, M.: Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags. Part 1: Alkali oxide–silica systems. Calphad. 30, 270–276 (2006).

    Article  Google Scholar 

  29. Yazhenskikh, E., Hack, K., Müller, M.: Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags Part 2: Alkali oxide–alumina systems. Calphad. 30, 397–404 (2006).

    Article  Google Scholar 

  30. Hack, K., Jantzen, T., Müller, M., Yazhenskikh, E., Wu, G.: A novel thermodynamic database for slag systems and refractory materials. In: 5th International Congress on the Science and Technology of Steelmaking., Dresden (2012).

  31. Yazhenskikh, E., Müller, M., Hack, K.: Thermodynamic Assessment of the Al2O3-K2O-Na2O-SiO2-CaO-MgO. Jülich. 2, (2011).

  32. Boigelot, R., Graz, Y., Bourgel, C., Defoort, F., Poirier, J.: The SiO2-P2O5 binary system: new data concerning the temperature of liquidus and the volatilisation of phosphorus, Ceram. Int. 41, 2353–2360 (2015).

    Article  Google Scholar 

  33. Levin, E.M., Robbins, C.R., McMurdie, H.F.: Phase Diagrams for Ceramists. The American Ceramic Society, Columbus, Ohio 43214 (1964)

  34. Khadilkar, A., Rozelle, P.L., Pisupati, S.V.: Models of agglomerate growth in fluidized bed reactors: Critical review, status and applications. Powder Technol. 264, 216–228 (2014)

    Article  Google Scholar 

  35. Bartels, M., Lin, W., Nijenhuis, J., Kapteijn, F., van Ommen, J.R.: Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention. Prog. Energy Combust. Sci. 34, 633–666 (2008)

    Article  Google Scholar 

  36. Öhman, M., Nordin, A., Skrifvars, B.-J., Backman, R., Hupa, M.: Bed agglomeration characteristics during fluidized bed combustion of biomass fuels. Energy Fuels. 14, 169–178 (2000)

    Article  Google Scholar 

  37. Brus, E., Ohman, M., Nordin, A.: Mechanisms of Bed Agglomeration during Fluidized-Bed Combustion of Biomass Fuels. Energy Fuels. 19, 825–832 (2005)

    Article  Google Scholar 

  38. Öhman, M., Pommer, L., Nordin, A.: Bed agglomeration characteristics and mechanisms during gasification and combustion of biomass fuels. Energy Fuels. 19, 1742–1748 (2005)

    Article  Google Scholar 

  39. Visser, H.J.M.: The influence of fuel composition on agglomeration behaviour in fluidised-bed combustion. Project 2020-01-12- 14-006, Novem subsidy program Renewable Energy in the Netherlands (Duurzame Energie Nederland, DEN) (2004).

  40. Kaknics, J., Defoort, F., Richard, Poirier, J: Inorganic phase transformation in Miscanthus ash. Energy Fuels. 29, 6433–6442 (2015)

    Article  Google Scholar 

  41. Kaknics, J., Michel, R., Richard, A., Poirier, J.: High-temperature interactions between molten miscanthus ashes and bed materials in a fluidized-bed gasifier. Energy Fuels. 29, 1785–1792 (2015)

    Article  Google Scholar 

  42. Geyter, S. De, Marcus, Ö., Bostrom, D., Eriksson, M., Nordin, A.: Effects of non-quartz minerals in natural bed sand on agglomeration characteristics during fluidized bed combustion of biomass fuels. Energy Fuels. 21, 2663–2668 (2007)

    Article  Google Scholar 

  43. Zevenhoven-Onderwater, M., Blomquist, J.-P., Shrifvars, B.-J., Backman, R., Hupa, M.: The prediction of behaviour of ashes from five different solid fuels in fluidized bed combustion. Fuel. 79, 1353–1361 (2000)

    Article  Google Scholar 

  44. Fryda, L.E., Panopoulos, K.D., Kakaras, E.: Agglomeration in fluidised bed gasification of biomass. Powder Technol. 181, 307–320 (2008)

    Article  Google Scholar 

  45. Brus, E., Öhman, M., Nordin, A.: Mechanisms of Bed Agglomeration during Fluidized-Bed Combustion of Biomass Fuels. Energy Fuels. 19, 825–832 (2005)

    Article  Google Scholar 

  46. Michel, R., Ammar, M.R., Poirier, J., Simon, P.: Phase transformation characterization of olivine subjected to high temperature in air. Ceram. Int. 39, 5287–5294 (2013).

    Article  Google Scholar 

  47. Michel, R., Ammar, M.R., Véron, E., Simon, P., Poirier, J.: Investigating the mechanism of phase transformations and migration in olivine at high temperature. RSC Adv. 4, 26645–26652 (2014).

    Article  Google Scholar 

  48. Michel, R., Kaknics, J., Bouchetou, M.L., Gratuze, B., Balland, M., Hubert, J., Poirier, J.: Physicochemical changes in Miscanthus ash on agglomeration with fluidized bed material. Chem. Eng. J. 207–208, 497–503 (2012)

    Article  Google Scholar 

  49. Kaknics, J., Michel, R., Poirier, J.: Inorganic phase transformation of miscanthus ashes in fluidized bed reactors. Fuel Process. Technol. 141, 178–184 (2016)

    Article  Google Scholar 

  50. Michel, R., Kaknics, J., de Bilbao, E., Poirier, J.: The mechanism of agglomeration of the refractory materials in a fluidized-bed reactor. Ceram. Int. 42, 2570–2581 (2016).

    Article  Google Scholar 

  51. Corella, J., Toledo, J.M., Padilla, R.: Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: Which is better?. Energy 2000,713–20 (2004)

  52. Sutton, D., Kelleher, B., Ross, JRH.: Review of literature on catalysts for biomass gasification. Fuel Process Technol. 73,155–173 (2001).

    Article  Google Scholar 

  53. Devi, L., Ptasinski, KJ., Janssen, FJJG., van Paasen, SVB., Bergman, PCA., Kiel, JHA.: Catalytic decomposition of biomass tars: Use of dolomite and untreated olivine. Renew. Energy. 30, 565–587 (2005)

    Article  Google Scholar 

  54. Weerachanchai, P., Horio, M., Tangsathitkulchai, C.: Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass. Bioresour. Technol. 100, 1419–1427 (2009)

    Article  Google Scholar 

  55. Steenari, B-M., Lindqvist, O.: High temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite. Biomass and Bioenergy.14,67–76 (1998).

    Article  Google Scholar 

  56. Geldart, D.: Expansion of gas fluidized beds. Ind. Eng. Chem. Res. 43, 5802–5809 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Region centre, France, and the ANR (Agence Nationale de la Recherche) Project GAMECO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kaknics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaknics, J., Michel, R., Poirier, J. et al. Experimental Study and Thermodynamic Modelling of High Temperature Interactions Between Molten Miscanthus Ashes and Bed Particles in Fluidized Bed Reactors. Waste Biomass Valor 8, 2771–2790 (2017). https://doi.org/10.1007/s12649-017-9828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9828-x

Keywords

Navigation