Skip to main content

Advertisement

Log in

Sonication Boost the Total Reducing Sugar (TRS) Extraction from Sugarcane Bagasse After Dilute Acid Hydrolysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

It is necessary to explore the non-conventional as well as renewable energy resources to meet the growing energy demand in developing countries, like India. Sugarcane is the second largest agricultural product, which can provide the ample source of bagasse as a waste-biomass for the extraction of fermentable sugar. Sugarcane bagasse is an abandoned source of total reducing sugar (TRS) for bioethanol production. Hydrolysis of pretreated sugarcane bagasse in dilute sulfuric acid was investigated at different acid concentrations (0.25–0.75% v/v) and ultrasound effect carried out to improve the extent of sugar extraction. The current work observes the effect of sonication on extraction of total reducing sugar (TRS) from bagasse. Effects of various operating variables of sonication, including amplitude (60–100%), cycle (0.6–1.0), treatment time (0–15 min) has been analyzed for each acid concentration. Observation shows that under optimum sonication conditions (80% amplitude, 0.8 cycle and 10 min), around 25% improvement of TRS extraction occurs at 0.5% (v/v) acid concentration. Amount of total reducing sugar extracted from bagasse was measured by standard analytical DNS method. Analysis of variance has been used to explain experimental results obtained after sonication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leitao, V.F., Ferrara, M.A., Molinari, H.B.C.: Biomass residues in Brazil: availability and potential uses. Waste Biomass Valor. 1, 65–76 (2010). doi:10.1007/S12649-010-9008-8

    Article  Google Scholar 

  2. Roberto, I.C., Mussatto, S.I., Rodrigues, R.C.L.B.: Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind. Crops Prod. 17, 171–176 (2003)

    Article  Google Scholar 

  3. Cerqueira, D.A., Rodrigues, G., Meireles, C.D.: Optimization of sugarcane bagasse cellulose acetylaion. Carbohydr. Polym. 69, 579–582 (2007)

    Article  Google Scholar 

  4. Bhattacharyya, S., Bhattacharjee, C.: India, the sleeping giant country for bioethanol production from agricultural residues: a review. Indian J. Env. Prot. 30(4), 300–306 (2010)

    Google Scholar 

  5. Ensinas, A.V., Nebra, S.A., Lozano, M.A., Serra, L.M.: Analysis of process steam demand reduction and electricity generation in sugar and ethanol production from sugarcane. Energy Convers. Manag. 48, 2978–2987 (2007)

    Article  Google Scholar 

  6. Buddadee, B., Wirojanagud, W., Watts, D.J., Pitakaso, R.: The development of multi-objective optimization model forexcess bagasse utilization: a case study for Thailand. Environ. Imp. Assess. Rev. 28, 380–391 (2008)

    Article  Google Scholar 

  7. Peng, F., Ren, J.L., Bian, J., Peng, P., Sun, R.C.: Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J. Agric. Food Chem. (2009). doi:10.1021/jf900986bo

  8. Alonso, P.W., Garzone, P., Cornacchia, G.: Agro-industry sugarcane residues disposal: the trends of their conversion into energy carriers in Cuba. Waste Manage. 27, 869–885 (2007)

    Article  Google Scholar 

  9. Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T.: Biotechnological potential of agroindustrial residues: I. Sugarcane bagasse. Bioresour. Technol. 74, 69–80 (2000)

    Article  Google Scholar 

  10. Laser, M., Schulman, D., Allen, S., Lichwa, J., Antal, M., Lynd, L.: A comparison of liquid hot water and steam pretreatment of sugarcane bagasse for bioconversion to ethanol. Bioresour. Technol. 81(ER1), 33–44 (2002)

    Article  Google Scholar 

  11. Gray, K.A., Zhao, L., Emptage, M.: Bioethanol. Curr. Opin. Chem. Biol. 10, 1–6 (2006)

    Article  Google Scholar 

  12. Aguilar, R., Ramírez, J.A., Garrote, G., Vásquez, M.: Kinetic study of the acid hydrolysis of sugarcane bagasse. J. Food Eng. 55, 309–318 (2002)

    Article  Google Scholar 

  13. Beguin, P., Aubert, J.P.: The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58 (1994)

    Article  Google Scholar 

  14. Martin, C., Galbe, M., Wahlbom, C., Hahn-Hagerdal, B., Jonsson, L.: Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilizing Saccharomyces cerevisiae. Enzyme Microbial. Technol. 31(3), 274–282 (2002)

    Article  Google Scholar 

  15. Neureiter, M., Danner, H., Thomasser, C., Saidi, B., Braun, R.: Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Applied Biochem. Biotechnol. 98/100(1/3), 49–58 (2002)

    Article  Google Scholar 

  16. Kapucu, H., Gu¨lsoy, N., Mehmetoglu, U.: Disruption and protein released kinetics by ultrasonication of Acetobacter peroxydan cells. Biochem. Eng. J. 5, 57–62 (2000)

    Article  Google Scholar 

  17. Ho, C.W., Chewa, T.K., Ling, T.C., Kamaruddin, S., Tan, W.S., Tey, B.T.: Efficient mechanical cell disruption of Escherichia coli by an ultrasonicator and recovery of intracellular hepatitis B core antigen. Process Biochem. 41, 1829–1834 (2006)

    Article  Google Scholar 

  18. Inoue, Y., Kikura, H., Murakawa, H., Aritomi, M., Mori, M.: A study of ultrasonic propagation for ultrasonic flow rate measurement. Flow Meas. Instrum. 19, 223–232 (2008)

    Article  Google Scholar 

  19. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)

    Article  Google Scholar 

  20. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  21. Pattra, S., Sangyoka, S., Boonmee, M., Reungsang, A.: Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolyzate by Clostridium butyricum. Int. J. Hydrogen Energy 33, 5256–5265 (2008)

    Article  Google Scholar 

  22. Sivers, M.V., Zacchi, G.: A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour. Technol. 51, 43–52 (1995)

    Article  Google Scholar 

  23. Sehgal, C., Steer, R.P., Sutherland, R.G., Verrall, R.E.: Sonoluminescence of aqueous solutions. J. Phys. Chem. 81(26), 2618–2620 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjib Bhattacharjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, S., Datta, S. & Bhattacharjee, C. Sonication Boost the Total Reducing Sugar (TRS) Extraction from Sugarcane Bagasse After Dilute Acid Hydrolysis. Waste Biomass Valor 3, 81–87 (2012). https://doi.org/10.1007/s12649-011-9078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-011-9078-2

Keywords

Navigation