Skip to main content
Log in

Current–voltage hysteresis and dielectric properties of PVA coated MWCNT film

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current–voltage (I–V) characteristic of PVA–MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law (\( \omega^{S} \)) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current–voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density–electric field data with the established theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F Kreupl, R Bruchhaus, P Majewski, J B Philipp, R Symanczyk, T Happ, C Arndt, M Vogt, R Zimmermann, A Buerke, A P Graham and M Kund IEEE Int. Electron Devices Meet. 96 521 (2008)

    Google Scholar 

  2. H Y Jeong, O J Y Kim, J W Kim, J O Hwang, J E Kim, J Y Lee, T H Yoon, B J Cho, S O Kim, R S Ruoff and S Y Choi Nano Lett. 10 4381 (2010)

    Article  ADS  Google Scholar 

  3. C G Navarro, R T Weitz, A M Bittner, M Scolari, A Mews, M Burghard and K Kern Nano Lett. 7 3499 (2007)

    Article  ADS  Google Scholar 

  4. W S Kim, H S Song, B O Lee, K H Kwon and M S Lim Macromol. Res. 10 253 (2002)

    Article  Google Scholar 

  5. M S P Shaffer and A H Windle Adv. Mater. 11 937 (1999)

    Article  Google Scholar 

  6. M Cadek, J N Coleman, K P Ryan, V Nicolosi, G Bister, A Fonseca, J B Nagy, K Szostak, F Beguin and W J Blau Nano Lett. 4 353 (2004)

    Article  ADS  Google Scholar 

  7. L M Minus, H G Chae and S Kumar Polymer 47 3705 (2006)

    Article  Google Scholar 

  8. O Probst, E M Moore, D E Resasco and B P Grady Polymer 45 4437 (2004)

    Article  Google Scholar 

  9. A Peled, E Zaguri and G Marom Compos. Part A Appl. S. 39 930 (2008)

    Article  Google Scholar 

  10. A Nilasaroya, L A Poole-Warren, J M Whitelock and P J Martens Biomaterials 29 4658 (2008)

    Article  Google Scholar 

  11. M L Minus, H G Chae and S Kumar Macromol. Chem. Phys. 210 1799 (2009)

    Article  Google Scholar 

  12. A B Dalton, C Stephan, J N Coleman, B McCarthy, P M Ajayan, S Lefrant, P Bernier, W J Blau and H J Byrne J. Phys. Chem. B 104 10012 (2000)

    Article  Google Scholar 

  13. H Xia, Q Wang and G Qui Chem. Mater. 15 3879 (2003)

    Article  Google Scholar 

  14. Y Sabba and E L Thomas Macromolecules 37 4815 (2004)

    Article  ADS  Google Scholar 

  15. R Ramasubramaniam, J Chen and H Liu Appl. Phys. Lett. 83 2928 (2003)

    Article  ADS  Google Scholar 

  16. M Castellino, A Chiolerio, M I Shahzad, P V Jagdale, A Tagliaferro Compos. Part A 61 108 (2014)

    Article  Google Scholar 

  17. Q Tang, Y Chan and K Zhang Sens. Actuators B Chem. 152 99 (2011)

    Article  Google Scholar 

  18. T Fei, K Jiang, F Jiang, R Mu and T Zhang J. Appl. Poly. Science 131 39726 (2014)

    Google Scholar 

  19. G M Nasr, A S El-Haleem, A Klingner, A M Alnozahy and M H Mourad J. Multidiscip. Eng. Sci. Technol. 5 2 (2015)

    Google Scholar 

  20. W Li, Y Zheng, X Fu, J Peng, L Ren, P Wang and W Song Int. J. Electrochem. Sci. 8 5738 (2013)

    Google Scholar 

  21. M Edwards, P Guggilla, A Janen, J Polius, S Egarievwe and M Curley Am. J. Mater. Sci. 5 1 (2015)

    Google Scholar 

  22. N B Rithin Kumar, V Crasta and B M Praveen Mater. Res. Exp. 3 055012 (2016)

    Article  Google Scholar 

  23. A V Korobeinyka, R L D Whitby, J J Niub, Y Gogotsi and S V Mikhalovsky Mater. Chem. Phys. 128 514 (2011)

    Article  Google Scholar 

  24. Z Wang, M D Shirley, S T Meikle, R L D Whitby and S V Mikhalovsky Carbon 47 73 (2009)

    Article  Google Scholar 

  25. A K Srivastava and H S Virk Bull. Mater. Sci. 23 533 (2000)

    Article  Google Scholar 

  26. J Tauc, R Grigorovici and A Vancu Phys. Status Solidi A 15 627 (1966)

    Article  Google Scholar 

  27. S Das, S Kar and S Chaudhuri J. Appl. Phys. 99 114303 (2006)

    Article  ADS  Google Scholar 

  28. B D Viezbicke, S Patel, B E Davis and D P Birnie Phys. Status Solidi B 252 1700 (2015)

    Article  ADS  Google Scholar 

  29. C J Mathai, S Saravanan, M R Anantharaman, S Venkatachalam and S Jayalekshmi J. Phys. D Appl. Phys. 35 2206 (2002)

    Article  ADS  Google Scholar 

  30. C Bartholome, P Miaudet, A Derré, M Maugey, O Roubeau, C Zakri and P Poulin Compos. Sci. Technol. 68 2568 (2008)

    Article  Google Scholar 

  31. K G Dassios and C Galiotis Carbon 50 4291 (2012)

    Article  Google Scholar 

  32. S Sinha, S K Chatterjee, J Ghosh and A K Meikap J. Phys. D Appl. Phys. 47 275301 (2014)

    Article  ADS  Google Scholar 

  33. D P Almon, C C Hunter and A R West J. Matter. Sci. 19 3236 (1984)

    Article  ADS  Google Scholar 

  34. A.K. Jonscher Nature 267 673 (1977)

    Article  ADS  Google Scholar 

  35. A K Jonscher Dielectric Relaxation in Solids (London: Chelsea Dielectric group) (1983)

    Google Scholar 

  36. A K Das, S Sinha, A Mukherjee and A K Meikap Mater. Chem. Phys. 167 286 (2015)

    Article  Google Scholar 

  37. A R Long Adv. Phys. 31 553 (1982)

    Article  ADS  Google Scholar 

  38. P Extance, S R Elliot and E A Davis Phys. Rev. B 32 8148 (1985)

    Article  ADS  Google Scholar 

  39. S R Elliott Adv. Phys. 36 135 (1987)

    Article  ADS  Google Scholar 

  40. N G McCrum, B E Read and G Williams Anelastic and Dielectric Effects in Polymeric Solids (New York: Wiley) (1967)

    Google Scholar 

  41. R Bergman J. Appl. Phys. 88 1365 (2000)

    Article  ADS  Google Scholar 

  42. J C Maxwell Treatise on Electricity and Magnetism 1 (Oxford: Oxford University Press (1988)

    MATH  Google Scholar 

  43. KW Wagner (1913) Ann. Phys. (Lpz) 40 53

    Google Scholar 

  44. V Hippel (1954) Dielectric and Waves (New York: Wiley) (1954)

    Google Scholar 

  45. S M Sze Physics of Semiconductor Devices (New York: Wiley) (1981)

    Google Scholar 

  46. M Dawber, K M Rabe and J F Scott Rev. Mod. Phys. 77 1083 (2005)

    Article  ADS  Google Scholar 

  47. M A Lampert and P Mark Current Injection in Solids 23 (New York: Academic) (1970)

    Google Scholar 

Download references

Acknowledgements

The authors thank to the CSIR (Project No. 03/1278/13/EMR-II), Govt. of India for financial support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Kumar Meikap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.K., Meikap, A.K. Current–voltage hysteresis and dielectric properties of PVA coated MWCNT film. Indian J Phys 92, 685–693 (2018). https://doi.org/10.1007/s12648-017-1148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1148-2

Keywords

PACS Nos.

Navigation