Skip to main content
Log in

Structural phase transition and multiferroic properties of Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr)

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The multiferroic BiFeO3 and Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr) have been synthesized using direct mechanosynthesis. Detailed investigations were made on the influence of Ca–Mn and Sr–Mn co-substitutions on the structure change, electric and magnetic properties of the BFO. Rietveld refinement on the XRD pattern of the modified samples clarifies the structural transition from R3c:H (parent BiFeO3) to the biphasic structure (R3c: H + Pnma). Scanning electron micrographs confirmed the polycrystalline nature of the materials and each of the microstructure comprised of uniformly distributed grains with less porosity. The dielectric measurements reveal that enhancement in dielectric properties due to the reduction of oxygen vacancies by substitutional ions. Studies of frequency-dependence of impedance and related parameters exhibit that the electrical properties of the materials are strongly dependent on temperature, and bear a good correlation with its microstructure. The bulk resistance (evaluated from impedance studies) is found to decrease with increasing temperature for all the samples. The alternating current (ac) conductivity spectra show a typical signature of an ionic conducting system, and are found to obey Jonscher’s universal power law. Preliminary studies of magnetic characteristics of the samples reveal enhanced magnetization for Ca–Mn co-substituted sample. The magnetoelectric coefficient as the function of applied dc magnetizing field under fixed ac magnetic field 15.368 Oe is measured and this ME coefficient αME corresponds to induction of polarization by a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J Wang, J B Neaton, H Zheng, V Nagarajan, S B Ogale and R Ramesh Science 299 1719 (2003)

    Article  ADS  Google Scholar 

  2. G Catalan and J F Scott Adv. Mater. 21 2463 (2009)

    Article  Google Scholar 

  3. J Wang Science 299 1719 (2003)

    Article  ADS  Google Scholar 

  4. M K Singh, Y Yang and C G Takoudis Coord. Chem. Rev. 253 2920 (2009)

    Article  Google Scholar 

  5. J Chen, X R Xing, A Watson, W Wang, R B Yu and J X Deng Chem. Mater. 19 3598 (2007)

    Article  Google Scholar 

  6. M Valant, A K Axelsson and N Alford Chem. Mater. 19 5431 (2007)

    Article  Google Scholar 

  7. B Yu, M Li, Z Hu, L Pei, D Guo, X Zhao and S. Dong Appl. Phys. Lett. 93 182909 (2008)

    Article  ADS  Google Scholar 

  8. V A Khomchenko, M Kopcewicz, A M L Lopes, Y G Pogorelov and J P Araujo J. Phys. D: Appl. Phys. 41 102003 (2008)

    Article  ADS  Google Scholar 

  9. P Kharel, S Talebi, B Ramachandran, A Dixit, VM Naik, MB Sahana J. Phys. Condens. Mater. 21 036001 (2009)

    Article  ADS  Google Scholar 

  10. Z X Cheng, X L Wang, S X Dou, H Kimura and K. Ozawa J. Appl. Phys. 104 116109 (2008)

    Article  ADS  Google Scholar 

  11. Y F Cui, Y G Zhao, L B Luo, J J Yang, H Chang and M H Zhu Appl. Phys. Lett. 97 222904 (2010)

    Article  ADS  Google Scholar 

  12. V R Palkar, D C Kundaliya, S K Malik and S. Bhattacharya Phys. Rev. B 69 212102 (2004)

    Article  ADS  Google Scholar 

  13. D H Wang, W C Goh, M Ning and C K Ong Appl. Phys. Lett. 88 212907 (2006)

    Article  ADS  Google Scholar 

  14. S Thakur, O P Pandey and K Singh J. Mol. Struc. 1074 186 (2014)

    Article  ADS  Google Scholar 

  15. G Dong, G Tan, Y Luo, W Liu, A Xia and H Ren Appl. Surf. Sci. 305 55 (2014)

    Article  ADS  Google Scholar 

  16. K Saravana Kumar, C Venkateswaran, D Kannan, B Tiwari and M S Ramachandra Rao J. Phys. D: Appl. Phys. 45 415302 (2012)

    Article  ADS  Google Scholar 

  17. J L Garcıa-Munoz, C Frontera, B Rivas-Murias, J Mira J. Appl. Phys. 105 084116 (2009)

    Article  ADS  Google Scholar 

  18. J Rout, R N P Choudhary, H B Sharma and S R Shannigrahi Ceram. Int. 41 9078 (2015)

    Google Scholar 

  19. K J Park, C H Kim, Y J Yoon, S M Song, Y T Kim and K H Hur J. Eur. Cer. Soc. 29 1735 (2009)

    Article  Google Scholar 

  20. C G Koops Phys. Rev. 83 121 (1951)

    Article  ADS  Google Scholar 

  21. Y K Jun, W T Moon, C M Chang, H S Kim, H S Ryu and J W Kim Solid State Commun. 135 133 (2005)

    Article  ADS  Google Scholar 

  22. S R Shannigrahi, A Huang, N Chandrasekhar, D Tripathy and A O Adeyeye Appl. Phys. Lett. 90 022901 (2007)

    Google Scholar 

  23. A K Jonscher J. Phys. D: Appl. Phys. 32 R57 (1999)

    Article  ADS  Google Scholar 

  24. P Venkateswarlu, A Laha and S B Krupanidhi Thin Solid Films 474 1 (2005)

    Article  ADS  Google Scholar 

  25. Funke K Progr Solid State Chem 22 111 (1993)

    Article  Google Scholar 

  26. F Kremer Dielectr Newslett 4 6 (2002)

    Google Scholar 

  27. D C Sinclair and A R West J. Mater. Sci. 29 6061 (1994)

    Article  ADS  Google Scholar 

  28. A Kumar, B P Singh, R N P Choudhary and A K Thakur Mater. Chem. Phys. 99 50 (2006)

    Google Scholar 

  29. Y Hosono, K Harada and Y Yamashita Jpn. J. Appl. Phys. 40 5722 (2001)

    Article  Google Scholar 

  30. C K Suman, K Prasad and R N P Choudhary Adv. Appl. Ceram. 104 294 (2005)

    Article  Google Scholar 

  31. B N Parida, P R Das, R Padhee, D Suara, A Mishra, J Rout and R N P Choudhary RNP Mater. Res. Bul. 61 544 (2015)

    Article  Google Scholar 

  32. J Rout, R N P Choudhary, S R Shannigrahi and H B Sharma J. Electron. Mater. 44 3811 (2015)

    Google Scholar 

  33. L H Yina, Y P Suna, F H Zhang, W B Wu, X Luo, X B Zhu J. Alloy. Comp. 488 254 (2009)

    Article  Google Scholar 

  34. I Sosnowskal, W Schäfer, W Kockelmann, K H Andersen and I O Troyanchuk Appl. Phys. A 74 S1040 (2002)

    Google Scholar 

  35. M I Bichurin, V Petrov, G Srinivasan, Phys. Rev. B 68 054402 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mr. B. B. Palei, IMMT Bhubaneswar for the kind help in X-ray diffraction analysis (XRD), Dr. H. B. K. Sharma, Manipur University, Imphal for carrying the SEM measurements; and Dr. Santiranjan Shannigrahi, Scientist III, IMRE, Singapore for magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoshna Rout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, J., Choudhary, R.N.P. Structural phase transition and multiferroic properties of Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr). Indian J Phys 92, 575–585 (2018). https://doi.org/10.1007/s12648-017-1123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1123-y

Keywords

PACS No.

Navigation