Skip to main content
Log in

Dependence of structural phase transition and lattice strain of Fe3O4 nanoparticles on calcination temperature

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Fe3O4 nanoparticles were synthesized, using a simple co-precipitation method and then calcined at various temperatures in the range of 50–850 °C for 1 h in air. After calcination, the nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The X-ray diffraction results indicated that Fe3O4 nanoparticles were converted to γ-Fe2O3 by calcining at 250 °C for 1 h and then to α-Fe2O3 on calcining in the range of 550–650 °C. The average crystallite size of the nanoparticles was calculated by using the Scherrer and Williamson-Hall methods. The average crystallite size of the iron oxides NPs increased from 7.2 to 35.8 nm by increasing calcination temperature from 50 to 850 °C. A small strain existed, which were affected on the physical and structural properties of Fe3O4. The vibrating sample magnetometer results indicated that, the as-synthesized nanoparticles converted from superparamagnetic to ferromagnetic phase with calcinations up to 650 °C, due to increasing size of nanoparticles from a single domain to multidomain as indicated in the X-ray diffraction results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M Aliahmad and M Noori Indian J. Phys. 87 431 (2013).

    Article  ADS  Google Scholar 

  2. G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011).

    Article  ADS  Google Scholar 

  3. S Mitra et al. Indian J. Phys. 85 649 (2011).

  4. S Devi and M Srivastva Indian J. Phys. 84 1561 (2010).

    Article  ADS  Google Scholar 

  5. J Bhadra and D Sarkar Indian J. Phys. 84 693 (2010).

    Article  ADS  Google Scholar 

  6. S Sarmah and A Kumar Indian J. Phys. 85 713 (2011).

    Article  ADS  Google Scholar 

  7. M Hofmann, S J Campbell, W A Kaczmarek and S Welzel J. Alloys Comp. 348 278 (2003).

    Article  Google Scholar 

  8. R Valenzuela et al. J. Alloys Comp. 488 227 (2009).

  9. W H Bragg Nature 95 561 (1915).

    Article  ADS  Google Scholar 

  10. H T Jeng, G Y Guo and D J Huang Phys. Rev. Lett. 93 156403 (2004).

    Article  ADS  Google Scholar 

  11. E J Verwey, P W Haayman and F C Romeijn J. Chem. Phys. 15 181 (1947).

    Article  ADS  Google Scholar 

  12. S Laurent et al. Chem. Rev. 108 2064 (2008).

  13. M Chirita and I Grozescu Chem. Bull. POLITECHNICA Univ. 54 1 (2009).

    Google Scholar 

  14. J Tang, M Myers, K A Bosnick and L E Brus J. Phys. Chem. B 107 7501 (2003).

    Article  Google Scholar 

  15. Y S Kim, K Nakatsuka, T Fujita and T Atarashi J. Magn. Magn. Mater. 201 361 (1999).

    Article  ADS  Google Scholar 

  16. J H Li, R Y Hong, H Z Li, J Ding, Y Zheng and D G Wei Mater. Chem. Phys. 113 140 (2009).

    Article  Google Scholar 

  17. J H Jang and H B Lim Microchem. J. 94 148 (2010).

    Article  Google Scholar 

  18. P Mallick, C Rath, R Biswal and N C Mishra Indian J. Phys. 83 517 (2009).

  19. C R Lin, Y M Chu and S C Wang Mater. Lett. 60 447 (2006).

    Article  Google Scholar 

  20. S Ayyappan, G Gnanaprakash, G Panneerselvam, M P Antony and J Philip J. Phys. Chem. C 112 18376 (2008).

    Article  Google Scholar 

  21. S Duhan and S Devi Int. J. Electron. Eng. 2 89 (2010).

    Google Scholar 

  22. G Gnanaprakash, S Ayyappan, T Jayakumar, J Philip and B Raj Nanotech. 17 5851 (2006).

    Article  ADS  Google Scholar 

  23. A Jafari, K Boustani and S Farjami Shayesteh J. Supercond. Nov. Magn. 27 187 (2014).

    Article  Google Scholar 

  24. A A Shal and A Jafari J. Supercond. Nov. Magn. 27 1531 (2014).

    Article  Google Scholar 

  25. H E Swanson, H F McMurdie, M C Morris and E H Evans Standard X-Ray Diffraction Powder Patterns (Washington: National Bureau of Standards) Vol 25, Sec 5, p 31 (1967).

  26. H Iida, K Takayanagi, T Nakanishi and T Osaka J. Colloid. Interface. Sci. 314 274 (2007).

    Article  Google Scholar 

  27. R M Cornell and U Schwertmann The iron oxides. Structure, Properties, Reactions, Occurrences and Uses (Weinheim: John Wiley & Sons) 2nd ed. p 5 (2006).

  28. A Maurya, P Chauhan, SK Mishra and R K Srivastava J. Alloys Comp. 509 8433 (2011).

    Article  Google Scholar 

  29. C Kittel Introduction to Solid State Physics (Singapore: John Wiley & Sons) 7th ed. p 42 (1996).

  30. B D Cullity Elements of X-ray Diffraction (Massachusetts Addison-Wesley) 1st ed. p 465 (1956).

  31. A K Zak, W H Abd Majid, M E Abrishami and R Yousefi Solid State Sci. 13 251 (2011).

    Article  ADS  Google Scholar 

  32. M Nirouei, A Jafari and K Boustani J. Supercond. Nov. Magn. 27 1 (2014).

    Article  Google Scholar 

  33. A K Zak and W H Abd Majid Ceram. Int. 36 1905 (2010).

    Article  Google Scholar 

  34. M Riazian Indian J. Phys. 87 991 (2013).

  35. V Senthilkumar, P Vickraman, M Jayachandran and C Sanjeeviraja J. Mater. Sci.: Mater. Electron. 21 343 (2010).

    Google Scholar 

  36. C Bharti, S N Choudhary and T P Sinha Indian J. Phys. 83 409 (2009).

  37. T P Rao, M C Santhosh Kumar and V Ganesan Indian J. Phys. 85 1381 (2011).

    Article  ADS  Google Scholar 

  38. A K Tripathi, M K Singh, M C Mathpal, S K Mishra and A Agarwal J. Alloys Comp. 549 114 (2013).

    Article  Google Scholar 

  39. S Nasrazadani and A Raman Corros Sci. 34 1355 (1993).

    Article  Google Scholar 

  40. M Ishii and M Nakahira Solid State Commun. 11 209 (1972).

    Article  ADS  Google Scholar 

  41. M Ma, Y Zhang, W Yu, H-y Shen, H-q Zhang and N Gu Colloid. Surfaces A: Physicochem. Eng. Aspects 212 219 (2003).

    Article  Google Scholar 

  42. J L Zhang, R S Srivastava and R D K Misra Langmuir 23 6342 (2007).

    Article  Google Scholar 

  43. H Namduri and S Nasrazadani Corros. Sci. 50 2493 (2008).

    Article  Google Scholar 

  44. F Dang, N Enomoto, J Hojo and K Enpuku Ultrason. Sonochem. 16 649 (2009).

    Article  Google Scholar 

  45. A Raman, B Kuban and A Razvan Corros. Sci. 32 1295 (1991).

    Article  Google Scholar 

  46. D M Farrell A Study of The Infrared Absorption in The Oxidation of Magnetite to Maghemite and Hematite (Canada Mines Branch) Inv. Rept. 72–18 p 44 (1972).

  47. Y S Li, J S Church and A L Woodhead J. Magn. Magn. Mater. 324 1543 (2012).

    Article  ADS  Google Scholar 

  48. R Kaiser and G Miskolczy J. Appl. Phys. 41 1064 (1970).

    Article  ADS  Google Scholar 

  49. S Ahmad, U Riaz, A Kaushik and J Alam J. Inorg. Organomet. Polym. 19 355 (2009).

    Article  Google Scholar 

  50. S P Gubin Magnetic Nanoparticles (Weinheim: Wiley-VCH) p 214 (2009).

  51. R D Zysler, M Vasquez-Mansilla, C Arciprete, M Dimitrijewits, D Rodriguez-Sierra and C Saragovi J. Magn. Magn. Mater. 224 39 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge university of Guilan for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, A., Farjami Shayesteh, S., Salouti, M. et al. Dependence of structural phase transition and lattice strain of Fe3O4 nanoparticles on calcination temperature. Indian J Phys 89, 551–560 (2015). https://doi.org/10.1007/s12648-014-0627-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0627-y

Keywords

PACS Nos.

Navigation