Skip to main content
Log in

Nitrotyrosine adsorption on carbon nanotube: a density functional theory study

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We have studied the effect of nitrotyrosine on electronic properties of different single-wall carbon nanotubes by density functional theory. Optimal adsorption configurations of nitrotyrosine adsorbed on carbon nanotube have been determined by calculation of adsorption energy. Adsorption energies indicate that nitrotyrosine is chemisorbed on carbon nanotubes. It is found that the nitrotyrosine adsorption modifies the electronic properties of the semiconducting carbon nanotubes significantly and these nanotubes become n-type semiconductors, while the effect of nitrotyrosine on metallic carbon nanotubes is not considerable and these nanotubes remain metallic. Results clarify sensitivity of carbon nanotubes to nitrotyrosine adsorption and suggest the possibility of using carbon nanotubes as biosensor for nitrotyrosine detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F Dekker, N Abello, R Wisastra and R Bischoff Enrichment and Detection of Tyrosine-Nitrated Proteins, Curr. Protoc. Protein. Sci. Aug.: Unit14.13 (2012)

  2. N Abello, H A M Kerstjens, D S Postma and R Bischoff J. Proteome. Res. 8 3222 (2009)

    Article  Google Scholar 

  3. J M Souza, G Peluffo and R Radi Free Radical Bio. Med. 45 357 (2008)

    Article  Google Scholar 

  4. N Ding, X Lu and C-M Lawrence Wu Comp. Mater. Sci. 51 141 (2012)

    Article  Google Scholar 

  5. S Li, J Singh, H Li and I A Banerjee Biosensor Nanomaterials (Germany: Wiley-VCH Verlag GmbH & Co. KGaA) (2011)

    Book  Google Scholar 

  6. B Leca-Bouvier and L J Blum Analyt. Lett. 38 1491 (2005)

    Article  Google Scholar 

  7. X Luo and J J Davis Chem. Soc. Rev. 42 5944 (2013)

    Article  Google Scholar 

  8. S Reich, C Thomsen and J Maultzsch Carbon Nanotubes Basic Concepts and Physical Properties (Weinheim: Wiley-VCH Verlag GmbH & Co., KGaA) (2004)

    Google Scholar 

  9. M S Dresselhaus, G Dresselhaus and R Saito Carbon 33 883 (1995)

    Article  Google Scholar 

  10. O Leenaerts, B Partoens and F M Peeters Phys. Rev. B 77 125416 (2008)

    Article  ADS  Google Scholar 

  11. S Jalili and R Majidi J. Comp. Theor. Nanosci. 3 664 (2006)

    Google Scholar 

  12. R Majidi Mo. Phys. 111 89 (2013)

    Article  ADS  Google Scholar 

  13. R Majidi and A R Karami Physica E 54 177 (2013)

    Article  ADS  Google Scholar 

  14. M Chi and Y P Zhao Comput. Mater. Sci. 46 1085 (2009)

    Article  Google Scholar 

  15. J Zhao, A Budum, J Han and J Ping Lu Nanotechnology 13 195 (2002)

    Article  ADS  Google Scholar 

  16. R K Pandyan, S Seenithurai and M Mahendran Indian J. Phys. 86 677 (2012)

    Article  ADS  Google Scholar 

  17. F Ma, Z X Zhang, H S Jia, X G Liu, Y Y Hao and B S Xu J. Mol. Struct: THEOCHEM 955 134 (2010)

    Article  Google Scholar 

  18. C Rajesh, C Majumder, H Mizuseki and Y Kawazoe J. Chem. Phys. 130 (2009) 124911

    Article  ADS  Google Scholar 

  19. M Chi and Y-P Zhao Comp. Mat. Sci. 56 79 (2012)

    Article  Google Scholar 

  20. Q Yuan, Y-P Zhao, L Li and T Wang J. Phys. Chem. C 113 6107 (2009)

    Article  Google Scholar 

  21. T Ozaki et al. User’s manual of OpenMX version 3.6. http://www.openmx-square.org (2011)

  22. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  23. G Algara-Siller et al. Carbon 65 80 (2013)

    Article  Google Scholar 

  24. E Cho, H Kim, C Kim and S Han Chem. Phys. Lett. 419 134 (2006)

    Article  ADS  Google Scholar 

  25. K Gunn, J Bernholc and Y-K Kwon Appl. Phys. Lett. 97 063113 (2010)

    Article  ADS  Google Scholar 

  26. M Mananghaya, E Rodulfo and G Nonato Santos Int. J. Sci. Eng. Res. 3 1125 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Majidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majidi, R., Karami, A.R. Nitrotyrosine adsorption on carbon nanotube: a density functional theory study. Indian J Phys 88, 483–487 (2014). https://doi.org/10.1007/s12648-013-0438-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-013-0438-6

Keywords

PACS Nos.

Navigation