Skip to main content
Log in

Analytical modeling of electrical characteristics of coaxial nanowire FETs

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, an analytical approach based on ballistic current transport is presented to investigate the electrical characteristics of the coaxial nanowire field effect transistor (CNWFET). The potential distribution along the nanowire is derived analytically by applying Laplace equation. In addition to application of WKB approximation and ballistic transport, tunneling process and quantum state of energy are implemented to determine the amount of electron transport along the nanowire from the source to the drain terminals. To consider the tunneling phenomena, WKB approximation is used and the transmission coefficients on both sides of the channel are obtained separately. In ballistic regime, an expression for channel current in terms of the bias voltages and Schottky barrier height (SBH) is derived. The results confirm a close correlation between the current equation of this work and the results presented via other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Javey, J Guo, Q Wang, M Lundstrom and H Dai Nature 424 654 (2003)

    Article  ADS  Google Scholar 

  2. S Heinze, J Tersoff, R Martel, V Derycke, J Appenzeller and Ph Avouris Phys. Rev. Lett. 89 106801 (2002)

    Article  ADS  Google Scholar 

  3. Y Cui, Z Zhong, D Wang, W Wang and M Lieber Nano Lett. 3 149 (2003)

    Article  ADS  Google Scholar 

  4. J Wang, E Polizzi and M Lundstrom IEEE International Electron Devices Meeting p695 (2003)

  5. D Hisamoto, W C Lee, J Kedzierski, H Takeuchi, K Asano, C Kuo et al, IEEE Trans. Electron Devices 47 2320 (2002)

    ADS  Google Scholar 

  6. X Huang, W-C Lee, C Kuo, D Hisamoto, L Chang, J Kedzierski et al, IEEE Trans. Electron Devices 48 880 (2001)

    Article  ADS  Google Scholar 

  7. B Doyle, S Datta, M Doczy, S Hareland, B Jin, J Kavalieros et al, IEEE Electron Device Lett. 24 263 (2003)

    Article  ADS  Google Scholar 

  8. J-T Park, J-P Colinge and C Diaz IEEE Electron Device Lett. 22 405 (2001)

    Article  ADS  Google Scholar 

  9. F-L Yang, H Y Chen, F C Chen, C C Huang, C Y Chang, H K Chiu et al, 2002 IEEE International Electron Devices Meeting p255 (2002)

  10. X Duan, C Niu, V Sahi, J Chen, J W Parce, S Empedocles et al, Nature 425 274 (2003)

    Article  ADS  Google Scholar 

  11. E Leobandung, J Gu, L Guo and S Y Chou J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 15 2791 (1997)

    Article  ADS  Google Scholar 

  12. J Wang, A Rahman, G Klimeck and M Lundstrom IEEE International Electron Devices Meeting p530 (2005)

  13. T Bryllert, L E Wernersson, L E Froberg and S Samuelson IEEE Electron Device Lett. 27 323 (2006)

    Article  ADS  Google Scholar 

  14. J Xiang, W Lu, Y Hu, Y Wu, H Yan and C M Lieber Nature 441 489 (2006)

    Article  ADS  Google Scholar 

  15. T Saito, T Saraya, T Inukai, H Majima, M Nagumo and T Hiramoto IEICE Trans. Electron. E85-C(5) 1073 (2002)

    Google Scholar 

  16. J-T Park and J-P Colinge IEEE Trans. Electron Devices 49 2222 (2002)

    Article  ADS  Google Scholar 

  17. C P Auth and J D Plummer IEEE Electron Device Lett. 18 74 (1997)

    Article  ADS  Google Scholar 

  18. B S Doyle, S Datta, M Doczy, S Hareland, B Jin, J Kavalieros et al, IEEE Electron Device Lett. 24 263 (2003)

    Article  ADS  Google Scholar 

  19. J Wang, E Polizzi and M Lundstrom J. Appl. Phys. 96 2192 (2004)

    Article  ADS  Google Scholar 

  20. A Rahman, J Guo, S Datta and M Lundstrom IEEE Trans. Electron Devices 50 1853 (2003)

    Article  ADS  Google Scholar 

  21. L C Castro, D L John and D L Pulfrey Conference on Optoelectronic and Microelectronic Materials and Devices p303 (2002)

  22. B C Paul, R Tu, S Fujita, M Okajima, T H Lee and Y Nishi IEEE Trans. Electron Devices 54 1637 (2007)

    Article  ADS  Google Scholar 

  23. S Datta Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press) (2005)

    Google Scholar 

  24. S Datta Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) (1995)

    Google Scholar 

  25. M S Lundstrom and J. Guo, Nanoscale Transistors (Springer) (2006)

  26. S-M Koo, M D Edelstein, Q Li, C A Richter and E M Vogel Nanotechnology 16 1482 (2005)

    Article  Google Scholar 

  27. D L John, L C Castro, J Clifford and D H Pulfrey IEEE Trans. Nanotechnol. 2 175 (2003)

    Article  ADS  Google Scholar 

  28. J Lee, C Ahn and M Shin Nanotechnology Materials and Devices Conference p552 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Kargar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kargar, A., Ghayour, R. Analytical modeling of electrical characteristics of coaxial nanowire FETs. Indian J Phys 85, 369–377 (2011). https://doi.org/10.1007/s12648-011-0049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-011-0049-z

Keywords

Navigation