Skip to main content
Log in

Les anticoagulants oraux directs chez le sujet âgé : point de vue du pharmacologue

Direct oral anticoagulants for elderly patients: from a pharmacologist’s perspective

  • Mise Au Point / Update
  • Published:
Les cahiers de l'année gérontologique

Résumé

Bien que les anticoagulants oraux directs (AODs) ne permettent pas de suivi biologique au vu de leur pharmacocinétique, le délai d’instauration du traitement après une chirurgie, l’âge, le poids, la fonction hépatique, la fonction rénale et les traitements concomitants sont autant de facteurs faisant varier leur profil de sécurité. Le dabigatran est à éviter chez des patients présentant une insuffisance rénale, et lors de coprescriptions avec des inhibiteurs/inducteurs de la P-gp. Les anti-Xa sont ceux qui présentent le profil de sécurité le plus sûr dans une population âgée, si toutefois les interactions médicamenteuses avec les inhibiteurs/inducteurs du CYP3A4 sont contrôlées. La puissance des anti-Xa réside dans l’inhibition rapide, directe, compétitive, réversible et avec une bonne affinité de l’activité enzymatique du facteur Xa libre ou dans le complexe prothrombinase, empêchant la génération de thrombine. Les tests de la coagulation altérés sont le taux de prothrombine, le TCA (moins sensible) et les tests chromogéniques. Quant au dabigatran, il inhibe directement, de façon réversible, rapide et compétitive, la thrombine libre ou liée. Le temps de thrombine et celui d’écarine sont les deux tests de la coagulation reflétant l’activité du dabigatran. Le dabigatran modifie aussi le TCA mais pas de manière concentration-dépendante. À l’heure actuelle, il n’existe pas d’antidotes commercialisés pour réverser leurs effets, mais certains sont actuellement en cours de développement.

Abstract

Despite DOAs not being able to undergo laboratory monitoring regarding their pharmacokinetics, the delay in starting treatment after surgery, age, weight, liver function, renal function and concomitant treatments are all factors that may alter their safety profile. Dabigatran is to be avoided by patients presenting with renal impairment, and also when co-prescribed with P-gp inhibitors/inducers. Anti-Xas are the medicinal products with the most reliable safety profile for the elderly population, if interactions with medicines such as CYP3A4 inhibitors/inducers are controlled. The power of anti-Xas lies in its quick, direct, competitive and reversible inhibition plus the strong affinity of the Xa factor enzyme activity, whether the Xa factor is free or within the prothrombinase complex, preventing the generation of thrombin. Tests for modified coagulation include the prothrombin ratio, aPTT (less sensitive), and chromogenic tests. With dabigatran, this product directly inhibits free or bound thrombin, reversibly, rapidly and competitively. The thrombin and ecarin clotting times are the two coagulation tests that reflect the activity of dabigatran. Dabigatran also modifies the aPTT, but not in a concentration dependent manner. Currently, there are no commercially available antidotes to reverse the effects of anticoagulants, however, some are in the process of being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AODs:

Anticoagulant oraux directs

ASC:

Aire sous la courbe

AVK:

Antivitamine K

BCRP:

Breast Cancer Resistance Protein

Cmax:

Concentration maximale

CYP:

Cytochrome P450

ECT:

Ecarin Clotting Time ou temps d’écarine

HBPM:

Héparine de bas poids moléculaire

IC50:

Concentration inhibitrice 50

IH:

Insuffisance hépatique

INR:

International normalized ratio

IR:

Insuffisance rénale

Ki:

Constante d’inhibition

Koff :

Constante de dissociation

Kon :

Constante d’association

P-gp:

P-glycoprotéine

TCA:

Temps de céphaline activé

Tmax:

Temps pour obtenir la concentration plasmatique maximale

TP:

Taux de prothrombine

TQ:

Temps de Quick

TT:

Temps de thrombine

Références

  1. Agence nationale de sécuritédu médicament et des produits de santé (ANSM) (2014). Les anticoagulants en France en 2014: états des lieux, synthèse et surveillance; avril. http://ansm.sante.fr/var/ansm_site/storage/original/application/26ed375830c56499-badf0014eb3bb81b.pdf

  2. Perzborn E, Strassburger J, Wilmen A, et al (2005) In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939–an oral, direct Factor Xa inhibitor. J Thromb Haemost JTH 3:514–21

    Article  CAS  PubMed  Google Scholar 

  3. Wong PC, Pinto DJP, Zhang D (2011) Preclinical discovery of apixaban, a direct and orally bioavailable factor Xa inhibitor. J Thromb Thrombolysis 31:478–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Furugohri T, Isobe K, Honda Y, et al (2008) DU-176b, a potent and orally active factor Xa inhibitor: in vitro and in vivo pharmacological profiles. J Thromb Haemost 6:1542–9

    CAS  PubMed  Google Scholar 

  5. Perzborn E, Roehrig S, Straub A, et al (2010) Rivaroxaban: a new oral factor Xa inhibitor. Arterioscler Thromb Vasc Biol 30:376–81

    Article  CAS  PubMed  Google Scholar 

  6. Depasse F, Busson J, Mnich J, et al (2005) Effect of BAY 59- 7939- a novel, oral, direct Factor Xa inhibitor- on clot-bound Factor Xa activity in vitro. J Thromb Haemost 3:P1104

    Article  Google Scholar 

  7. Frost C, Wang J, Nepal S, et al (2013) Apixaban, an oral, direct factor Xa inhibitor: single dose safety, pharmacokinetics, pharmacodynamics and food effect in healthy subjects: apixaban single dose safety, PK PD and food effect. Br J Clin Pharmacol 75:476–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Roehrig S, Straub A, Pohlmann J, et al (2005) Discovery of the novel antithrombotic agent 5-chloro-N-({(5S)-2-oxo-3- [4- (3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl} methyl)thiophene- 2-carboxamide (BAY 59-7939): an oral, direct factor Xa inhibitor. J Med Chem 48:5900–58

    Article  CAS  PubMed  Google Scholar 

  9. Garcia D, Libby E, Crowther MA (2010) The new oral anticoagulants. Blood 115:15–20

    Article  CAS  PubMed  Google Scholar 

  10. Hauel NH, Nar H, Priepke H, et al (2002) Structure-based design of novel potent nonpeptide thrombin inhibitors. J Med Chem 45:1757–66

    Article  CAS  PubMed  Google Scholar 

  11. Favaloro EJ, Lippi G (2012) The new oral anticoagulants and the future of haemostasis laboratory testing. Biochem Medica 22:329–41

    Article  CAS  Google Scholar 

  12. Douxfils J, Chatelain C, Chatelain B, et al (2013) Impact of apixaban on routine and specific coagulation assays: a practical laboratory guide. Thromb Haemost 110:283–94

    Article  CAS  PubMed  Google Scholar 

  13. Fawole A, Daw HA, Crowther MA (2013) Practical management of bleeding due to the anticoagulants dabigatran, rivaroxaban, and apixaban. Cleve Clin J Med 80:443–51

    Article  PubMed  Google Scholar 

  14. Samama MM, Contant G, Spiro TE, et al (2013) Laboratory assessment of rivaroxaban: a review. Thromb J 11:11–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Tripodi A (2012) Laboratory tests and the new oral anticoagulants. Thromb Res 130:S95–7

    Article  Google Scholar 

  16. Gomez-Outes A, Suarez-Gea ML, Lecumberri R, et al (2014) Specific antidotes in development for reversal of novel anticoagulants: a review. Recent Patents Cardiovasc. Drug Discov 9:2–10

    Article  CAS  Google Scholar 

  17. Greinacher A, Thiele T, Selleng K (2015) Reversal of anticoagulants: an overview of current developments: Thromb Haemost 113:931–42

    PubMed  Google Scholar 

  18. Paré G, Eriksson N, Lehr T, et al (2013) Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation 127:1404–12

    Article  PubMed  Google Scholar 

  19. Mueck W, Becka M, Kubitza D, et al (2007) Population model of the pharmacokinetics and pharmacodynamics of rivaroxaban- an oral, direct factor Xa inhibitor- in healthy subjects. Int J Clin Pharmacol Ther 45:335–44

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Zhang D, Raghavan N, et al (2010) In vitro assessment of metabolic drug-drug interaction potential of apixaban through Cytochrome P450 phenotyping, inhibition, and induction studies. Drug Metab Dispos 38:448–58

    Article  CAS  PubMed  Google Scholar 

  21. Härtter S, Koenen-Bergmann M, Sharma A, et al (2012) Decrease in the oral bioavailability of dabigatran etexilate after co-medication with rifampicin: rifampicin decreases oral bioavailability of dabigatran etexilate. Br J Clin Pharmacol 74:490–500

    Article  PubMed Central  PubMed  Google Scholar 

  22. Mueck W, Kubitza D, Becka M (2013) Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects: Drug interactions with rivaroxaban. Br J Clin Pharmacol 76:455–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Frost CE, Byon W, Song Y, et al (2015) Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor. Br J Clin Pharmacol 79:838–46

    Article  CAS  PubMed  Google Scholar 

  24. Gong IY, Kim RB (2013) Importance of pharmacokinetic profile and variability as determinants of dose and response to dabigatran, rivaroxaban, and apixaban. Can J Cardiol, New Opportunities and Challenges in Anticoagulation Therapy for Atrial Fibrillation Patients 29, S24–S33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Monassier.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayme-Dietrich, E., Aubertin-Kirch, G. & Monassier, L. Les anticoagulants oraux directs chez le sujet âgé : point de vue du pharmacologue. cah. année gerontol. 7, 88–97 (2015). https://doi.org/10.1007/s12612-015-0457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12612-015-0457-3

Mots clés

Keywords

Navigation