Skip to main content
Log in

Evolution of silicon particle damage on fatigue crack initiation and early propagation in an aluminum alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Low-cycle fatigue tests under both mechanical cyclic and thermal cyclic loadings were conducted to study the behavior of fatigue crack initiation and early propagation by means of metallographic and scanning electron microscopy (SEM). The damage mode of silicon particles has significant influence on crack behavior. Cracks are induced from fractured particles in mechanical fatigue or from debonded particles in thermal fatigue. Initiation of cracks by breaking through particles happens in particles with non-equiaxial particles, while initiation of cracks from debonded interfaces happens widely in clustered particles. For cracks induced by fracture particles, the subsequent coalescence of microcracks proceeds through the alternation of brittle fracture of particles. The sequent broken of particles takes the important part in the early propagation stage of fatigue crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Samuel AM, Doty HW, Valtierra S, Samuel FH. Effect of grain refining and Sr-modification interactions on the impact toughness of Al–Si–Mg cast alloys. Mater Des. 2014;56(56):264.

    Article  CAS  Google Scholar 

  2. Mohamed AMA, Samuel FH, Samuel AM, Doty HW, Valtierra S. Influence of tin addition on the microstructure and mechanical properties of Al–Si–Cu–Mg and Al–Si–Mg casting alloys. Metall Mater Trans A. 2008;39(3):490.

    Article  Google Scholar 

  3. Wang QG, Davidson CJ. Solidification and precipitation behaviour of Al–Si–Mg casting alloys. J Mater Sci. 2001;36(3):739.

    Article  CAS  Google Scholar 

  4. Caceres CH, Griffiths JR. Damage by the cracking of silicon particles in an Al–7Si–0.4Mg casting alloy. Acta Mater. 1996;44(1):25.

    Article  CAS  Google Scholar 

  5. Wang QG, Caceres CH, Griffiths JR. Damage by eutectic particle cracking in aluminum casting alloys A356/357. Metall Mater Trans A. 2003;34(12):2901.

    Article  Google Scholar 

  6. Jia K, Yu WB, Yao JM, Zhang S, Wu H. Al–9.00%Si–0.25%Mg alloys modified by ytterbium. Rare Met. 2017;36(2):95.

    Article  Google Scholar 

  7. Dighe MD, Gokhale AM, Horstemeyer MF. Effect of loading condition and stress state on damage evolution of silicon particles in an Al–Si–Mg-base cast alloy. Metall Mater Trans A. 2002;33(3):555.

    Article  Google Scholar 

  8. Beck T, Löhe D, Luft J, Henne I. Damage mechanisms of cast Al–Si–Mg alloys under superimposed thermal–mechanical fatigue and high-cycle fatigue loading. Mater Sci Eng A Struct. 2007;468(45):184.

    Article  Google Scholar 

  9. Spencer K, Corbin SF, Lloyd DJ. The influence of iron content on the plane strain fracture behaviour of AA 5754 Al–Mg sheet alloys. Mater Sci Eng A Struct. 2002;325(1–2):394.

    Article  Google Scholar 

  10. Emami AR, Begum S, Chen DL, Skszek T, Niu XP, Zhang Y, Gabbianelli F. Cyclic deformation behavior of a cast aluminum alloy. Mater Sci Eng A Struct. 2009;516(1):31.

    Article  Google Scholar 

  11. Tucker MT, Horstemeyer MF, Whittington WR, Solanki KN, Gullett PM. The effect of varying strain rates and stress states on the plasticity, damage, and fracture of aluminum alloys. Mech Mater. 2010;42(10):895.

    Article  Google Scholar 

  12. Lados DA, Apelian D, Donald JK. Fatigue crack growth mechanisms at the microstructure scale in Al–Si–Mg cast alloys: mechanisms in the near-threshold regime. Acta Mater. 2006;54(6):1475.

    Article  CAS  Google Scholar 

  13. Chang R, Morris WL, Buck O. Fatigue crack nucleation at intermetallic particles in alloys—a dislocation pile-up model. Scr Metall Mater. 1979;13(3):191.

    Article  Google Scholar 

  14. Morris WL. A comparison of microcrack closure load development for stage I and II cracking events for Al 7075-T651. Metall Mater Trans. 1977;8(7):1087.

    Article  Google Scholar 

  15. Morris WL. The effect of intermetallics composition and microstructure on fatigue crack initiation in Al 2219-T851. Metall Mater Trans. 1978;9(9):1345.

    Article  Google Scholar 

  16. Morris WL, Buck O, Marcus HL. Fatigue crack initiation and early propagation in Al 2219-T851. Metall Mater Trans. 1976;7(8):1161.

    Article  Google Scholar 

  17. Morris WL, James MR. Statistical aspects of fatigue crack nucleation from particles. Metall Mater Trans. 1980;11(5):850.

    Article  Google Scholar 

  18. Payne J, Welsh G Jr, Christ RJ, Nardiello J, Papazian JM. Observations of fatigue crack initiation in 7075-T651. Int J Fatigue. 2010;32(2):247.

    Article  CAS  Google Scholar 

  19. Yeh JW, Liu WP. The cracking mechanism of silicon particles in an A357 aluminum alloy. Metall Mater Trans. 1996;27(11):3558.

    Article  Google Scholar 

  20. Su JF, Nie X, Stoilov V. Characterization of fracture and debonding of Si particles in AlSi alloys. Mater Sci Eng A Struct. 2010;527(27–28):7168.

    Article  Google Scholar 

  21. Gokhale AM, Dighe MD, Horstemeyer M. Effect of temperature on silicon particle damage in A356 alloy. Metall Mater Trans. 1998;29(3):905.

    Article  Google Scholar 

  22. Gall K, Horstemeyer MF, Schilfgaarde MV, Baskes MI. Atomistic simulations on the tensile debonding of an aluminum–silicon interface. J Mech Phys Solids. 2000;48(10):2183.

    Article  CAS  Google Scholar 

  23. Gokhale AM, Patel GR. Quantitative fractographic analysis of variability in tensile ductility of a squeeze cast Al–Si–Mg base alloy. Mater Charact. 2005;54(1):13.

    Article  CAS  Google Scholar 

  24. Yang X, Huang X, Dai X, Campbell J, Grant RJ. Quantitative characterisation of correlations between casting defects and mechanical strength of Al–7Si–Mg alloy castings. Mater Sci Tech Lond. 2006;22(5):561.

    Article  CAS  Google Scholar 

  25. Mohamed AMA, Samuel FH, Kahtani SA. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Mater Sci Eng A Struct. 2013;577(577):64.

    Article  CAS  Google Scholar 

  26. Xu XP, Needleman A. Void nucleation by inclusion debonding in a crystal matrix. Modell Simul Mater Sci Eng. 1999;1(2):111.

    Article  Google Scholar 

  27. Needleman A. A Continuum model for void nucleation by inclusion debonding. J Appl Mech. 1987;54(3):525.

    Article  Google Scholar 

  28. Yu QM. Influence of the stress state on void nucleation and subsequent growth around inclusion in ductile material. Int J Fract. 2015;193(1):43.

    Article  Google Scholar 

  29. Gurland J. Observations on the fracture of cementite particles in a spheroidized 1.05% C steel deformed at room temperature. Acta Metall Metar. 1972;20(5):735–80.

    Article  CAS  Google Scholar 

  30. Gall K, Horstemeyer M, Mcdowell DL, Fan J. Finite element analysis of the stress distributions near damaged Si particle clusters in cast Al–Si alloys. Mech Mater. 2000;32(5):277.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Project of China (No. 2016YFC0801900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Zhang, Z. Evolution of silicon particle damage on fatigue crack initiation and early propagation in an aluminum alloy. Rare Met. 42, 2470–2476 (2023). https://doi.org/10.1007/s12598-017-0930-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0930-9

Keywords

Navigation