Skip to main content
Log in

Electrochemical arrays coupled with magnetic separators for immunochemistry

  • Published:
Bioanalytical Reviews

Abstract

Electrochemical methods are increasingly applied to immunoassays, because they overcome problems associated with other modes of detection. In particular, with respect to conventional immunoassays, electrochemical immunosensors show versatility, reliability, and fast analysis time. In immunosensor strategy, the antigen or antibody can be immobilized directly onto the surface of the electrochemical transducer that will finally be used to reveal the amount of the affinity reaction. However, the use of the electrode surface as a solid phase as well as an electrochemical transducer presents some problems: a shielding of the surface by biospecifically bound antibody molecules can cause hindrance in the electron transfer, resulting in a reduced voltammetric signal. Thus, as an alternative solid phase, magnetic beads because of their low toxicity and high biocompatibility have gained much attention in chemistry, associated with various analytical techniques, due to their suitability for immobilization of biomolecules. Magnetic micro- or nanobeads can be separated easily and quickly by magnetic forces and will be used together with bioaffine ligands, e.g., antibodies or proteins with a high affinity to the target. The special advantages of magnetic separation techniques are the fast and simple handling of a sample vial and the opportunity to deal with large sample volumes without the need for time-consuming centrifugation steps. This also makes biomagnetic separation ideal for automated assay/analysis systems which will play a very important role in the near future. This review presents some examples of immunochemical assay developed using magnetic beads as a solid phase coupled with electrochemical detection techniques, in particular, using electrochemical arrays as transducers. Applications related to static measurements, together with in-flow detection systems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Franek M, Hruska K (2005) Antibody based methods for environmental and food analysis: a review. Vet Med Czech 50:1–10

    CAS  Google Scholar 

  2. Li X-M, Yang X-Y, Zhang S-S (2008) Electrochemical enzyme immunoassay using model labels. Trends Anal Chem 27:543–553

    Article  Google Scholar 

  3. Liu JM, Zhu GH, Rao ZM, Wei CJ, Li LD, Chen CL, Li ZM (2005) Determination of human IgG by solid substrate room temperature phosphorescence immunoassay based on an antibody labeled with nanoparticles containing dibromofluorescein luminescent molecules. Anal Chim Acta 528:29–35

    Article  CAS  Google Scholar 

  4. Beckman EM, Kawaguchi T, Chandler GT, Decho AW (2008) Development of a microplate-based fluorescence immunoassay using quantum dot streptavidin conjugates for enumeration of putative marine bacteria, Alteromonas sp., associated with a benthic harpacticoid copepod. J Microbiol Meth 75:441–444

    Article  CAS  Google Scholar 

  5. Takahashi H, Takahashi M, Nagaya H, Hirako M, Sawai K, Minamihashi A, Inumaru S, Yokomizo Y, Geshi M, Okano A, Okuda K (2005) Establishment of a specific radioimmunoassay for bovine interferon τ. Theriogenology 63(4):1050–1060

    Article  CAS  Google Scholar 

  6. Fowler JM, Wong DKY, Halsall HB, Heineman WR (2008) Recent developments in electrochemical immunoassays and immunosensors. In: Zhang X, Ju H, Wang J (eds) Electrochemical Sensors. Biosensors and their Biomedical Applications. Elsevier, New York, pp 115–143

    Chapter  Google Scholar 

  7. Laschi S, Mascini M (2002) Disposable electrochemical immunosensor for environmental applications. Ann Chim 92:425–433

    CAS  Google Scholar 

  8. Ding Y, Zhou L, Halsall HB, Heineman WR (1999) Feasibility studies of simultaneous multianalyte amperometric immunoassay based on spatial resolution. J Pharm Biomed Anal 19(1–2):153–161

    Article  CAS  Google Scholar 

  9. Zaytseva N, Montagna RA, Baeumner AJ (2005) Microfluidic Biosensor for the Serotype-Specific Detection of Dengue Virus RNA. Anal Chem 77:7520–7527

    Article  CAS  Google Scholar 

  10. Kwon Y, Hara CA, Knize MG, Hwang MH, Venkateswaran KS, Wheeler EK, Bell PM, Renzi RF, Fruetel JA, Bailey CG (2008) Magnetic bead based immunoassay for autonomous detection of toxins. Anal Chem 80:8416–8423

    Article  CAS  Google Scholar 

  11. Thomas JH, Kim SK, Hesketh PJ, Halsall HB, Heineman WR (2004) Microbead-based electrochemical immunoassay with interdigitated array electrodes. Anal Biochem 328:113–122

    Article  CAS  Google Scholar 

  12. Bausch AR, Möller W, Sackmann E (1999) Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J 76:573–579

    Article  CAS  Google Scholar 

  13. Kuramitz H (2009) Magnetic microbead-based electrochemical immunoassays. Anal Bioanal Chem 394:61–69

    Article  CAS  Google Scholar 

  14. Sugawara K, Yugami A, Kuramitz H (2009) Electrochemical monitoring of binding between wheat germ agglutinin and cellohexose-modified magnetic microbeads. Anal Bioanal Chem 395:767–772

    Article  CAS  Google Scholar 

  15. Zacco E, Pividori MI, Alegret S, Galve R, Marco M-P (2006) Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues. Anal Chem 78:1780–1788

    Article  CAS  Google Scholar 

  16. Centi S, Laschi S, Fránek M, Mascini M (2005) A disposable immunomagnetic electrochemical sensor based on functionalised magnetic beads and carbon-based screen-printed electrodes (SPCEs) for the detection of polychlorinated biphenyls (PCBs). Anal Chim Acta 538:205–212

    Article  CAS  Google Scholar 

  17. Centi S, Silva E, Laschi S, Palchetti I, Mascini M (2007) Polychlorinated biphenyls (PCBs) detection in milk samples by an electrochemical magneto-immunosensor (EMI) coupled to solid-phase extraction (SPE) and disposable low-density arrays. Anal Chim Acta 594:9–16

    Article  CAS  Google Scholar 

  18. Lin Y-Y, Liu G, Wai CM, Lin Y (2007) Magnetic beads-based bioelectrochemical immunoassay of polycyclic aromatic hydrocarbons. Electrochem Commun 9:1547–1552

    Article  CAS  Google Scholar 

  19. Tudorache M, Tencaliec A, Bala C (2008) Magnetic beads-based immunoassay as a sensitive alternative for atrazine analysis. Talanta 77:839–843

    Article  CAS  Google Scholar 

  20. Varlan R, Suls J, Jacobs P, Sansen W (1995) A new technique of enzyme entrapment for planar biosensors. Biosens Bioelectron 10(8):XV–XIX

    Article  Google Scholar 

  21. Dock E, Christenson A, Sapelnikova S, Krejci J, Emnéus J, Ruzgas T (2005) A steady-state and flow-through cell for screen-printed eight-electrode arrays. Anal Chim Acta 531:165–172

    Article  CAS  Google Scholar 

  22. Stefan R-I, Van Staden J, Aboul-Enein HY (1999) Electrochemical sensor arrays. Crit Rev Anal Chem 29:133–153

    Article  CAS  Google Scholar 

  23. Tang D, Tang J, Su B, Ren J, Chen G (2010) Simultaneous determination of five-type hepatitis virus antigens in 5 min using an integrated automatic electrochemical immunosensor array. Biosens Bioelectron 25:1658–1662

    Article  CAS  Google Scholar 

  24. Kim SJ, Gobi KV, Iwasaka H, Tanaka H, Miura N (2007) Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes. Biosens Bioelectron 23:701–707

    Article  CAS  Google Scholar 

  25. Morais S, Tortajada-Genaro LA, Arnandis-Chover T, Puchades R, Maquieira A (2009) Multiplexed microimmunoassays on a digital versatile disk. Anal Chem 81:5646–5654

    Article  CAS  Google Scholar 

  26. Wu J, Yan F, Tang J, Zhai C, Ju H (2007) A disposable multianalyte electrochemical immunosensor array for automated simultaneous determination of tumor markers. Clin Chem 53:1495–1502

    Article  CAS  Google Scholar 

  27. Tang D, Yuan R, Chai Y (2007) Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassay. Clin Chem 53(7):1323–1329

    Article  CAS  Google Scholar 

  28. Thomas JH, Ronkainen-Matsuno NJ, Farrell S, Halsall HB, Heineman WR (2003) Microdrop analysis of a bead-based immunoassay. Microchem J 74:267–276

    CAS  Google Scholar 

  29. Kálab T, Skládal P (1997) Disposable multichannel immunosensors for 2, 4-dichlorophenoxyacetic acid using acetylcholinesterase as an enzyme label. Electroanalysis 9:293–297

    Article  Google Scholar 

  30. Kálab T, Skládal P (1995) A multichannel immunochemical sensor for determination of 2, 4-dichlorophenoxyacetic acid. Anal Chim Acta 316:73–78

    Article  Google Scholar 

  31. Dequaire M, Degrand C, Limoges B (1999) An immunomagnetic electrochemical sensor based on a perfluorosulfonate-coated screen-printed electrode for the determination of 2, 4-dichlorophenoxyacetic acid. Anal Chem 71:2571–2577

    Article  CAS  Google Scholar 

  32. Peruski AH, Peruski LF Jr (2003) Immunological methods for detection and identification of infectious disease and biological warfare agents. Clin Diagn Lab Immunol 10:506–513

    CAS  Google Scholar 

  33. Zhuang J, Cheng T, Gao L, Luo Y, Ren Q, Lu D, Tang F, Ren X, Yang D, Feng J, Zhu J, Yan X (2010) Silica coating magnetic nanoparticle-based silver enhancement immunoassay for rapid electrical detection of ricin toxin. Toxicon 55:145–152

    Article  CAS  Google Scholar 

  34. Gatto-Menking DL, Yu H, Bruno JG, Goode MT, Miller M, Zulich AW (1995) Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrochemiluminescence sensor. Biosens Bioelectron 10:501–507

    Article  CAS  Google Scholar 

  35. Centi S, Stoica AI, Laschi S, Mascini M (2010) Development of an electrochemical immunoassay based on the use of an eight-electrodes screen-printed array coupled with magnetic beads for the detection of antimicrobial sulfonamides in honey. Electroanalysis. doi:10.1002/elan.200900618

    Google Scholar 

  36. Varshney M, Li Y (2007) Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens Bioelectron 22:2408–2414

    Article  CAS  Google Scholar 

  37. Varshney M, Li Y, Srinivasan B, Tung S (2007) A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sensors Actuators B 128:99–107

    Article  Google Scholar 

  38. Delibato E, Volpe G, Romanozzo D, De Medici D, Toti L, Moscone D, Palleschi G (2009) Development and application of an electrochemical plate coupled with immunomagnetic beads (ELIME) array for Salmonella enterica detection in meat samples. J Agric Food Chem 57:7200–7204

    Article  CAS  Google Scholar 

  39. Piermarini S, Volpe G, Micheli L, Moscone D, Palleschi G (2009) An ELIME-array for detection of aflatoxin B1 in corn samples. Food Control 20:371–375

    Article  CAS  Google Scholar 

  40. Pumera M, Merkoci A, Alegret S (2006) New materials for electrochemical sensing VII. Microfluidic chip platforms. Trends. Anal Chem 25:219–235

    CAS  Google Scholar 

  41. Rossier JS, Baranek S, Morier P, Vollet C, Vulliet F, De Chastonay Y, Reymond F (2008) GRAVI: robotized microfluidics for fast and automated immunoassays in low volume. JALA 13(6):322–329

    CAS  Google Scholar 

  42. Lin C-C, Wang J-H, Wu H-W, Lee G-B (2010) Microfluidic Immunoassays. JALA 15(3):253–274

    CAS  Google Scholar 

  43. Lien KY, Lee WC, Lei HY, Lee GB (2007) Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens Bioelectron 22(8):1739–1748

    Article  CAS  Google Scholar 

  44. Qiua J, Zhoub Y, Chenb H, Lina JM (2009) Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics. Talanta 79(3):787–795

    Article  Google Scholar 

  45. Hoegger D, Morier P, Vollet C, Heini D, Reymond F, Rossier JS (2007) Disposable microfluidic ELISA for the rapid determination of folic acid content in food products. Anal Bioanal Chem 387:267–275

    Article  CAS  Google Scholar 

  46. Berti F, Laschi S, Palchetti I, Rossier JS, Reymond F, Mascini M, Marrazza G (2009) Microfluidic-based electrochemical genosensor coupled to magnetic beads for hybridization detection. Talanta 77:971–978

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mascini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laschi, S., Centi, S. & Mascini, M. Electrochemical arrays coupled with magnetic separators for immunochemistry. Bioanal Rev 3, 11–25 (2011). https://doi.org/10.1007/s12566-010-0020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12566-010-0020-z

Keywords

Navigation