Skip to main content

Advertisement

Log in

Toxin immunosensors and sensor arrays for food quality control

  • Published:
Bioanalytical Reviews

Abstract

The global efforts to improve consumer protection and public health lead to an increasing number of analytical approaches applicable to food analysis and process control. Biosensor systems are efficient analytical tools to monitor production processes or storage of nutrition and to control contamination outbreaks as they are easy-to-use, fast, and with minimal effort on sample preparation. Relevant targets of immunosensors implemented to food safety are prevalent bacterial toxins (staphylococcal enterotoxins and clostridial toxins), plant toxins (Ricin), mycotoxins (aflatoxins and ochratoxin A), marine toxins, and other pathogenic bacterial contaminations (Listeria, Salmonella, Staphylococcus aureus, or Escherichia coli). These cause acute intoxication and also chronic diseases in humans consuming contaminated food. Promising approaches for the determination of different types of toxins in food matrices will be outlined. The corresponding sensor systems use immunological receptor units such as antibodies or antigens and include optical (fluorescence and surface plasmon resonance), electrochemical, or acoustical readout methods. This review is focused on recent developments of sensor formats devoted to food safety control and is structured according to the type of toxin or contaminant that is recognized. It is intended to give an overview on emerging sensor technologies and their potential applications for the rapid analysis of the most important food poisoning agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

AP:

Alkaline phosphatase

ATR:

Attenuated total reflection

BoNT:

Botulinum neurotoxin

BSA:

Bovine serum albumin

CCD:

Charge-coupled device

CWC:

Chemical Weapons Convention

DON:

Deoxynivalenol

DPV:

Differential pulse voltammetry

EAPM:

Electrically active polyaniline-coated magnetic

ECL:

Electrochemoluminescence

EDC:

N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride

ELFA:

Enzyme-linked fluorescent assay

ELIMCL:

Enzyme-linked immunomagnetic chemiluminescence

ELISA:

Enzyme-linked immunosorbent assay

FAO:

Food and Agriculture Organization

FIA:

Flow injection analysis

FITC:

Fluorescein isothiocyanate

HPLC:

High-pressure liquid chromatography

HRP:

Horseradish peroxidase

IARC:

International Agency for Research on Cancer

ISO:

International Organization for Standardization

LD50:

Lethal dose (50% of the tested organisms die)

LED:

Light-emitting diode

LOD:

Limit of detection

MED:

Multichannel electrochemical detection

MS:

Mass spectrometry

NHS:

N-hydroxysuccinimide

NPP:

Nitrophenylphosphate

OTA:

Ochratoxin A

OWLS:

Optical waveguide lightmode spectroscopy

PCR:

Polymerase chain reaction

PDMS:

Polydimethylsulfoxide

PEG:

Polyethylene glycol

PEMC:

Piezoelectric-excited, millimeter-sized cantilever

PMMA:

Polymethylmethacrylate

PZT:

Lead zirconate titanate

QCM:

Quartz crystal microbalance

RPLA:

Reversed passive latex agglutination assay

SPE:

Screen-printed electrode

SPR:

Surface plasmon resonance

TMB:

Tetramethylbenzidine

TPA:

Tripropylamine

WHO:

World Health Organization

References

Introduction

  1. Bryan FL (1982) Diseases transmitted by foods. US Department of Health and Human Services, Public Health Service, Centers for Disease Control, Center for Professional Development and Training, Atlanta

  2. http://aggie-horticulture.tamu.edu

  3. Mead PS, Slutsker L, Dietz V, McCraig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5(5):607–625

    CAS  Google Scholar 

  4. http://www.cdc.gov

  5. Greig JD, Ravel A (2009) Analysis of foodborne outbreak data reported internationally for source attribution. Int J Food Microbiol 130(2):77–87

    CAS  Google Scholar 

  6. Kleter G, Prandini A, Filippi L, Marvin HJP (2009) Identification of potentially emerging food safety issues by analysis of reports published by the European Community’s Rapid Alert System for Food and Feed (RASFF) during a four-year period. Food Chem Toxicol 47(5):932–950

    CAS  Google Scholar 

  7. http://www.efsa.europa.eu

  8. http://www.fda.gov

  9. http://www.who.int/foodsafety/codex/en/index.html

  10. http://www.cspinet.org/foodsafety/outbreak/pathogen.php

  11. http://www.foodhaccp.com/outbreak.htm

  12. http://www.foodhaccp.com

  13. http://www.foodshield.org

  14. Notermans S, Gallhoff G, Zwietering MH, Mead GC (1995) The HACCP concept: specification of criteria using quantitative risk assessment. Food Microbiol 12:81–90

    Google Scholar 

  15. Barker GC, Gomez N, Smid J (2009) An introduction to biotracing in food chain systems. Trends Food Sci Technol 20(5):220–226

    CAS  Google Scholar 

  16. http://www.biotracer.org

  17. http://www.pathogencombat.com

  18. http://www.traceback-ip.eu/

  19. http://www.chill-on.com

  20. http://www.pathogencombat.com/about/links_other.aspx

  21. http://www.extension.iastate.edu/foodsafety/

  22. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzyme Microb Tecchnol 32(1):3–13

    CAS  Google Scholar 

  23. Cammann K, Guibault EA, Hall H, Kellner R, Wolfbeis OS (1996) The Cambridge definition of chemical sensors. Proceedings of the Cambridge Workshop on Chemical Sensors and Biosensors. Cambridge University Press, New York

Common ELISA methods and commercially available assay kits ELISAs for toxin determination

  1. Barna-Vetro I, Solti L, Teren J, Gyongyosi A, Szabo E, Wolfling A (1996) Sensitive ELISA test for determination of Ochratoxin A. J Agric Food Chem 44(12):4071–4074

    CAS  Google Scholar 

  2. Crowley EL, O’Sullivan CK, Guilbault GG (1999) Increasing the sensitivity of Listeria monocytogenes assays: evaluation using ELISA and amperometric detection. Analyst 124(3):295–299

    CAS  Google Scholar 

  3. Cudjoe KS, Thorsen LI, Sorensen T, Reseland J, Olsvik O, Granum PE (1991) Detection of Clostridium perfringens type A enterotoxin in faecal and food samples using immunomagnetic separation (IMS)–ELISA. Int J Food Microbiol 12(4):313–321

    CAS  Google Scholar 

  4. De Oliveira T, Cristina RM, Lee HA, Wyatt G, Hirooka EY, Morgan MRA (1994) A simple and rapid antibody-capture ELISA for the detection of staphylococcal enterotoxin A in food including a simple extraction step. Int J Food Sci Technol 29(5):563–573

    Google Scholar 

  5. Thirumala-Devi K, Mayo MA, Hall AJ, Craufurd PQ, Wheeler TR, Waliyar F, Subrahmanyam A, Reddy DVR (2002) Development and application of an indirect competitive enzyme-linked immunoassay for aflatoxin M1 in milk and milk-based confectionery. J Agric Food Chem 50(4):933–937

    CAS  Google Scholar 

  6. Gaudin V, Cadieu N, Sanders P (2005) Results of a European proficiency test for the detection of streptomycin/dihydrostreptomycin, gentamicin and neomycin in milk by ELISA and biosensor methods. Anal Chim Acta 529(1–2):273–283

    CAS  Google Scholar 

  7. Giletto A, Fyffe JG (1998) A novel ELISA format for the rapid and sensitive detection of staphylococcal enterotoxin A. Biosci Biotechnol Biochem 62(11):2217–2222

    CAS  Google Scholar 

  8. Jorgensen HJ, Mathisen T, Lovseth A, Omoe K, Qvale KS, Loncarevic S (2005) An outbreak of staphylococcal food poisoning caused by enterotoxin H in mashed potato made with raw milk. FEMS Microbiol Lett 252(2):267–272

    CAS  Google Scholar 

  9. Lapeyre C, Janin F, Kaveri SV (1988) Indirect double sandwich ELISA using monoclonal antibodies for detection of staphylococcal enterotoxins A, B, C1 and D in food samples. Food Microb 5(1):25–31

    CAS  Google Scholar 

  10. Morissette C, Goulet J, Lamoureux G (1991) Rapid and sensitive sandwich enzyme-linked immunosorbent assay for detection of staphylococcal enterotoxin B in cheese. Appl Environ Microbiol 57(3):836–842

    CAS  Google Scholar 

  11. Radoi A, Targa M, Prieto-Simon B, Marty JL (2008) Enzyme-linked immunosorbent assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M1 detection. Talanta 77(1):138–143

    CAS  Google Scholar 

  12. Sharma SK, Ferreira JL, Eblen BS, Whiting RC (2006) Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl Environ Microbiol 72(2):1231–1238

    CAS  Google Scholar 

  13. Wictome M, Newton KA, Jameson K, Dunnigan P, Clarke S, Gaze J, Tauk A, Foster KA, Shone CC (1999) Development of in vitro assays for the detection of botulinum toxins in foods. FEMS Immunol Med Microbiol 24(3):319–323

    CAS  Google Scholar 

  14. Wictome M, Newton K, Jameson K, Hallis B, Dunnigan P, Mackay E, Clarke S, Taylor R, Gaze J, Foster K, Shone C (2005) Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay. Appl Environ Microbiol 65(9):3787–3792

    Google Scholar 

  15. Yeung JM, Prelusky DB, Savard ME, Dang BDM, Robinson LA (1996) Sensitive immunoassay for Fumonisin B1 in corn. J Agric Food Chem 44(11):3582–3586

    CAS  Google Scholar 

  16. Yoshizawa T, Kohno H, Ikeda K, Shinoda T, Yokohama H, Morita K, Kusada O, Kobayashi Y (2004) A practical method for measuring deoxynivalenol, nivalenol, and T-2 + HT-2 toxin in foods by an enzyme-linked immunosorbent assay using monoclonal antibodies. Biosci Biotechnol Biochem 68(10):2076–2085

    CAS  Google Scholar 

Commercialized detection kits

  1. http://www.invitrogen.com/site/us/en/home/brands/Dynal.html

  2. Brett MM (2006) Kits for detection of food poisoning toxins produced by Bacillus cereus and Staphylococcus aureus. In: Adley C (ed) Methods in biotechnology, vol 21. Humana, New Jersey, pp 91–98

    Google Scholar 

  3. Hennekinne JA, Guillier F, Perelle S, De Buyser ML, Dragacci S, Krys S, Lombard B (2007) Intralaboratory validation according to the EN ISO 16 140 standard of the Vidas SET2 detection kit for use in official controls of staphylococcal enterotoxins in milk products. J Appl Microbiol 102(5):1261–1272

    CAS  Google Scholar 

  4. Park CE, Akhtar M, Rayman MK (1992) Nonspecific reactions of a commercial enzyme-linked immunosorbent assay kit (TECRA) for detection of staphylococcal enterotoxins in foods. Appl Environ Microbiol 58(8):2509–2512

    CAS  Google Scholar 

  5. Park CE, Akhtar M, Rayman MK (1994) Evaluation of a commercial enzyme immunoassay kit (RIDASCREEN) for detection of staphylococcal enterotoxins A, B, C, D, and E in foods. Appl Environ Microbiol 60(2):677–681

    CAS  Google Scholar 

  6. Vernozy-Rozand C, Mazuy-Cruchaudet C, Bavai C, Richard Y (2004) Comparison of three immunological methods for detecting staphylococcal enterotoxins from food. Lett Appl Microbiol 39(6):490–494

    CAS  Google Scholar 

  7. Cheung PY, Kwok KK, Kam KM (2007) Application of BAX system, Tecra Unique Salmonella test, and a conventional culture method for the detection of Salmonella in ready-to-eat and raw foods. J Appl Microbiol 103(1):219–227

    CAS  Google Scholar 

  8. De Saeger S, Sibanda L, Desmet A, Van Peteghem C (2002) A collaborative study to validate novel field immunoassay kits fo rapid mycotoxin detection. Int J Food Microbiol 75(1–2):135–142

    Google Scholar 

  9. Noonim P, Mahakarnchanakul W, Nielsen KF, Frisvad JC, Samson RA (2008) Isolation, identification and toxigenic potential of ochratoxin A-producing Aspergillus species from coffee beans grown in two regions of Thailand. Int J Food Microbiol 128(2):197–202

    CAS  Google Scholar 

  10. Flint H, Hartley NJ (1995) Evaluation of the TECRA Escherichia coli O157 visual immunoassay for tests on dairy products. Lett Appl Microbiol 21(2):79–82

    CAS  Google Scholar 

  11. Vernozy-Rozand C, Mazuy C, Ray-Gueniot S, Boutrand-Loei S, Meyrand A, Richard Y (1997) Detection of Escherichia coli O157 in French food samples using an immunomagnetic separation method and the VIDAS E. coli O157. Lett Appl Microbiol 25(6):442–446

    CAS  Google Scholar 

  12. Knight MT, Newman MC, Benzinger MJ Jr, Agin JR, Ash M, Sims P, Hughes D (1996) TECRA Listeria visual immunoassay (TLVIA) for detection of Listeria in foods: collaborative study. J AOAC Int 79(5):1083–1094

    CAS  Google Scholar 

  13. Sewell AM, Warburton DW, Boville A, Daley EF, Mullen K (2003) The development of an efficient and rapid enzyme linked fluorescent assay method for the detection of Listeria spp. from foods. Int J Food Microbiol 81(2):123–129

    CAS  Google Scholar 

  14. Rusul G, Yaacob NH (1995) Prevalence of Bacillus cereus in selected foods and detection of enterotoxin using TECRA-VIA and BCET-RPLA. Int J Food Microbiol 25(2):131–139

    CAS  Google Scholar 

  15. Zachariasova M, Hajslova J, Kostelanska M, Poustka J, Krplova A, Cuhra P, Hochel I (2008) Deoxynivalenol and its conjugates in beer: a critical assessment of data obtained by enzyme-linked immunosorbent assay and liquid chromatography coupled to tandem mass spectrometry. Anal Chim Acta 625(1):77–86

    CAS  Google Scholar 

  16. Zheng Z, Humphrey CW, King RS, Richard JL (2005) Validation of an ELISA test kit for the detection of total aflatoxins in grain and grain products by comparison with HPLC. Mycopathologia 159(2):255–263

    CAS  Google Scholar 

Biosensors and Sensor Arrays for screening toxins, bacterial and fungal contaminants in food products

  1. Wolfbeis OS (2004) Fiber-optic chemical sensors and biosensors. Anal Chem 76(12):3269–3284

    CAS  Google Scholar 

  2. Iga M, Seki A, Kubota Y, Watanabe K (2003) Acidity measurements based on a hetero-core structured fiber-optic sensor. Sens Actuators B Chem 96(1–2):234–238

    Google Scholar 

  3. Narayanaswamy R, Wolfbeis OS (2004) Optical sensors. Industrial environmental and diagnostic applications. Springer, Berlin

    Google Scholar 

  4. Schmitt K, Oehse K, Sulz G, Hoffmann C (2008) Evanescent field sensors based on tantalum peroxide waveguides—a review. Sensors 8(2):711–738

    CAS  Google Scholar 

  5. Pohanka M, Skládal P, Kroèa M (2007) Biosensors for biological warfare agent detection. Def Sci J 57(3):185–193

    Google Scholar 

  6. Pohanka M (2007) Immunosensors for chemical and biological warfare agents detection. Doctoral thesis, Masaryk University, Brno

  7. Rijal K, Mutharasan R (2007) Piezoelectric-excited millimeter-sized cantilever sensors detect density differences of a few micrograms/mL in liquid medium. Sens Actuators B Chem 124(1):237–244

    Google Scholar 

  8. Rasooly A, Harold KE (2009) Methods in molecular biology: biosensors and biodetection, vol 504. Humana, New Jersey

    Google Scholar 

  9. Bolton E, Richter MM (2001) Light emission at electrodes: an electrochemiluminescence demonstration. J Chem Educ 78(5):641–643

    Article  CAS  Google Scholar 

Sensors for bacterial toxins and spores

  1. Baillie L, Read TD (2001) Bacillus anthracis, a bug with attitude! Curr Opin Microbiol 4(1):78–81

    CAS  Google Scholar 

  2. Manchee RJ, Broster MG, Stagg AJ, Hibbs SE (1994) Formaldehyde solution effectively inactivates spores of Bacillus anthracis on the Scottish island of Gruinard. Appl Environ Microbiol 60(11):4167–4171

    CAS  Google Scholar 

  3. Carman JA, Hamblelon P, Melling J (1985) Bacillus anthracis, in isolation and dentification of micro-organisms of medical and veterinary importance. In: Collins CH, Grange GM (eds) Society of applied bacteriology technical series 21. Academic, London, pp 207–214

    Google Scholar 

  4. Inglesby TV, Dennis DT, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer J, Koerner JF, Layton M, McDade J, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Schoch-Spana M, Tonat K (2000) Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA J Am Med Assoc 283(17):2281–2290

    CAS  Google Scholar 

  5. Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS, Galbraith M, Tapper M, Fisk TL, Zaki S, Popovic T, Meyer RF, Quinn CP, Harper SA, Fridkin SK, Sejvar JJ, Shepard CW, McConnell M, Guarner J, Shieh WJ, Malecki JM, Gerberding JL, Hughes JM, Perkins BA (2001) Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 7(6):933–944

    CAS  Google Scholar 

  6. Edwards KA, Clancy HA, Baeumner AJ (2006) Bacillus anthracis: toxicology, epidemiology and current rapid-detection methods. Anal Bioanal Chem 384(1):73–84

    CAS  Google Scholar 

  7. Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Friedlander AM, Hauer J, McDade J, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Tonat K (1999) Anthrax as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA J Am Med Assoc 281(18):1735–1745

    CAS  Google Scholar 

  8. http://www.resrchintl.com

  9. Tims TB, Lim DV (2004) Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor. J Microbiol Methods 59(1):127–130

    CAS  Google Scholar 

  10. Pal S, Setterington EB, Alocilja EC (2008) Electrically active magnetic nanoparticles for concentrating and detecting Bacillus anthracis spores in a direct-charge transfer biosensor. IEEE Sens J 8(6):647–654

    CAS  Google Scholar 

  11. Davila AP, Jang J, Gupta AW, Walter T, Aronson A, Bashir R (2007) Microresonator mass sensors for detection of Bacillus anthracis Sterne spores in air and water. Biosens Bioelectron 22(12):3028–3035

    CAS  Google Scholar 

  12. Campbell GA, deLesdernier D, Mutharasan R (2007) Detection of airborne Bacillus anthracis spores by an integrated system of an air sampler and a cantilever immunosensor. Sens Actuators B Chem 127(2):376–382

    Google Scholar 

  13. Campbell GA, Mutharasan R (2006) PEMC sensor’s mass change sensitivityis 20 pg/Hz under liquid immersion. Biosens Bioelectron 22(1):35–41

    CAS  Google Scholar 

  14. Campbell GA, Mutharasan R (2006) Detection of Bacillus anthracis spores and a model protein using PEMC sensors in a flow cell at 1 mL/min. Biosens Bioelectron 22(1):78–85

    CAS  Google Scholar 

  15. Aureli P, Fenicia L, Pasolini B, Gianfranceschi M, McCroskey LM, Hatheway CL (1986) Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. J Infect Dis 154(2):207–211

    CAS  Google Scholar 

  16. Hall JD, McCroskey LM, Pincomb BJ, Hatheway CL (1985) Isolation of an organism resembling Clostridium barati which produces type F botulinal toxin from an infant with botulism. J Clin Microbiol 21(4):654–655

    CAS  Google Scholar 

  17. Kennedy D (2002) Beauty and the beast. Science 295(5560):1601

    CAS  Google Scholar 

  18. Beers MH (1999) Gastrointestinal disorders. In: Beers MH, Berkow R (eds) The Merck manual of diagnosis and therapy, 17th edn. Merck Research Laboratories, New Jersey, pp 221–342

    Google Scholar 

  19. Johnson EA (2003) Bacterial pathogens and toxins in foodborne disease. In: D’Mello JPF (ed) Food safety: contaminants and toxins. Cab International, Wallingford, pp 25–45

    Google Scholar 

  20. Caya JG, Agni R, Miller JE (2004) Clostridium botulinum and the clinical laboratorian: a detailed review of botulism, including biological warfare ramifications of botulinum toxin. Arch Pathol Lab Med 128(6):653–662

    CAS  Google Scholar 

  21. DHS (2005) BAA05-06: food biological agent detection sensor (FBADS). http://www.fbo.gov

  22. Ladd J, Taylor AD, Homola J, Jiang S (2008) Detection of botulinum neurotoxins in buffer and honey using a surface plasmon resonance (SPR) sensor. Sens Actuators B Chem 130(1):129–134

    Google Scholar 

  23. Frisk ML, Tepp WH, Lin G, Johnson EA, Beebe DJ (2007) Substrate-modified hydrogels for autonomous sensing of botulinum neurotoxin type A. Chem Mater 19(24):5842–5844

    CAS  Google Scholar 

  24. Rivera VR, Gamez FJ, Keener WK, White JA, Poli MA (2006) Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection. Anal Biochem 353(2):248–256

    CAS  Google Scholar 

  25. http://www.igen.com

  26. Bergdoll MS (1990) Staphylococcal food poisoning. In: Cliver DO (ed) Foodborne diseases. Academic, New Jersey, pp 85–106

    Google Scholar 

  27. Bergdoll MS (1989) Staphylococcus aureus. In: Doyle MP (ed) Foodborne bacterial pathogens. Dekker, New York, pp 463–523

    Google Scholar 

  28. Halpin-Dohnalek ML, Marth EH (1989) Staphylococcus aureus: production of extracellular compounds and behavior in foods. A review. J Food Prot 52(4):267–282

    CAS  Google Scholar 

  29. Nedelkov D, Rasooly A, Nelson RW (2000) Multitoxin biosensor-mass spectrometry analysis: a new approach for rapid, real-time, sensitive analysis of staphylococcal toxins in food. Int J Food Microbiol 60(1):1–13

    CAS  Google Scholar 

  30. Bergdoll MS (1979) Staphylococcal intoxications. In: Cliver DO, Riemann HP (eds) Food-borne infections and intoxications, 2nd edn. Academic, New Jersey, pp 443–490

    Google Scholar 

  31. Evenson ML, Hinds MW, Bernstein RS, Bergdoll MS (1988) Estimation of human dose of staphylococcal enterotoxin A from a large outbreak of staphylococcal food poisoning involving chocolate milk. Int J Food Microbiol 7(4):311–316

    CAS  Google Scholar 

  32. Archer DL, Young FE (1988) Contemporary issues: diseases with a food vector. Clin Microbiol Rev 1(4):377–398

    CAS  Google Scholar 

  33. Bergdoll MS (1979) Staphylococcal intoxications. In: Cliver DO, Riemann HP (eds) Food-Borne infections and intoxications, 2nd edn. Academic Press, New Jersey, pp 443–490

    Google Scholar 

  34. Zhang S, Iandolo JJ, Stewart GC (1998) The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol Lett 168(2):227–233

    CAS  Google Scholar 

  35. Su YC, Wong ACL (1995) Identification and purification of a new staphylococcal enterotoxin, H. Appl Environ Microbiol 61(4):1438–1443

    CAS  Google Scholar 

  36. Jay JM, Loessner MJ, Golden DA (2000) Modern Food Microbiology, 6th edn. Springer, Berlin

    Google Scholar 

  37. Callahan JH, Shefcheck KJ, Williams TL, Musser SM (2006) Detection confirmation, and quantification of staphylococcal enterotoxin B in food matrixes using liquid chromatography–mass spectrometry. Anal Chem 78(6):1789–1800

    CAS  Google Scholar 

  38. Noleto AL, Bergdoll MS (1982) Production of enterotoxin by a Staphylococcus aureus strain that produces three identifiable enterotoxins. J Food Protect 45(12):1096–1097

    CAS  Google Scholar 

  39. Dong Y, Phillips KS, Chen Q (2006) Immunosensing of Staphylococcus enterotoxin B (SEB) in milk with PDMS microfluidic systems using reinforced supported bilayer membranes (r-SBMs). Lab Chip 6(5):675–681

    CAS  Google Scholar 

  40. http://www.sapidyne.com

  41. Strachan NJC, John PG, Millar IG (1997) Application of a rapid automated immunosensor for the detection of Staphylococcus aureus enterotoxin B in cream. Int J Food Microbiol 35(3):293–297

    CAS  Google Scholar 

  42. Homola J, Dostalek J, Chen S, Rasooly A, Jiang S, Yee SS (2002) Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int J Food Microbiol 75(1-2):61–69

    CAS  Google Scholar 

  43. http://www.biacore.com

  44. Nedelkov D, Rasooly A, Nelson RW (2000) Multitoxin biosensor - mass spectrometry analysis: a new approach for rapid, real – time, sensitive analysis of staphylococcal toxins in food. Int J Food Microbiol 60(1):1–13

    CAS  Google Scholar 

  45. Nedelkov D, Nelson RW (2003) Detection of staphylococcal enterotoxin B via biomolecular interaction analysis mass spectrometry. Appl Environ Microbiol 69(9):5212–5215

    CAS  Google Scholar 

  46. Medina MB (2005) A biosensor method for a competitive immunoassay detection of staphylococcal enterotoxin B (SEB) in milk. J Rapid Methods Autom Microbiol 13(1):37–55

    CAS  Google Scholar 

  47. Medina MB (2006) A biosensor method for detection of staphylococcal enterotoxin a in raw whole egg. J Rapid Methods Autom Microbiol 14(2):119–132

    CAS  Google Scholar 

  48. Tempelman LA, King KD, Anderson GP, Ligler FS (1996) Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor. Anal Biochem 233(1):50–57

    CAS  Google Scholar 

  49. Lin HC, Tsai WC (2003) Piezoelectric crystal immunosensor for the detection of staphylococcal enterotoxin B. Biosens Bioelectron 18(12):1479–1483

    CAS  Google Scholar 

  50. Maraldo D, Mutharasan R (2007) Detection and confirmation of staphylococcal enterotoxin B in apple juice and milk using piezoelectric-excited millimeter-sized cantilever sensors at 2. 5 fg/mL. Anal Chem 79(20):7636–7643

    CAS  Google Scholar 

  51. Yang M, Kostov Y, Bruck HA, Rasooly A (2008) Carbon nanotubes with enhanced chemiluminescence immunoassay for CCD-based detection of Staphylococcal enterotoxin B in food. Anal Chem 80(22):8532–8537

    CAS  Google Scholar 

  52. Kijek TM, Rossi CA, Moss D, Parker RW, Henchal EA (2000) Rapid and sensitive immunomagnetic–electrochemiluminescent detection of staphyloccocal enterotoxin B. J Immunol Methods 236(1–2):9–17

    CAS  Google Scholar 

  53. http://www.iasys.com

  54. Rasooly L, Rasooly A (1999) Real time biosensor analysis of staphylococcal enterotoxin A in food. Int J Food Microbiol 49(3):119–127

    CAS  Google Scholar 

Sensors for aminoglycosides

  1. Brander GC (1986) Chemicals for animal health control. Taylor & Francis, London

    Google Scholar 

  2. Barza M, Scheife RT (1977) Drug therapy reviews: antimicrobial spectrum, pharmacology and therapeutic use of antibiotics. Part 4. Aminoglycosides. Am J Hosp Pharm 34(7):723–737

    CAS  Google Scholar 

  3. Ziv G, Sulman FG (1974) Distribution of aminoglycoside antibiotics in blood and milk. Res Vet Sci 17(1):68–74

    CAS  Google Scholar 

  4. Manners JG, Stewart R (1982) Presence of dihydrostreptomycin and penicillin in cows’ milk following intrauterine administration. Aust Vet J 58(5):203–204

    CAS  Google Scholar 

  5. International Dairy Federation (1991) International Dairy Federation Bulletin No. 258. Brussels, Belgium

  6. Haasnoot W, Stouten P, Cazemier G, Lommen A, Nouws JFM, Keukens HJ (1999) Immunochemical detection of aminoglycosides in milk and kidney. Analyst 124(3):301–305

    CAS  Google Scholar 

  7. Verheijen R, Osswald IK, Dietrich R, Haasnoot W (2000) Development of a one step strip test for the detection of (dihydro)streptomycin residues in raw milk. Food Agric Immunol 12(1):31–40

    CAS  Google Scholar 

  8. Gerhardt GC, Salisbury CDC, MacNeil JD (1994) Analysis of streptomycin and dihydrostreptomycin in milk by liquid chromatography. J AOAC Int 77(3):765–767

    CAS  Google Scholar 

  9. Stead DA (2000) Current methodologies for the analysis of aminoglycosides. J Chromatogr B 747(1+2):69–93

    CAS  Google Scholar 

  10. Ferguson JP, Baxter GA, McEvoy JDG, Stead S, Rawlings E, Sharman M (2002) Detection of streptomycin and dihydrostreptomycin residues in milk, honey and meat samples using an optical biosensor. Analyst 127(7):951–956

    CAS  Google Scholar 

  11. Gaudin V, Cadieu N, Sanders P (2005) Results of a European proficiency test for the detection of streptomycin / dihydrostreptomycin, gentamicin and neomycin in milk by ELISA and biosensor methods. Anal Chim Acta 529(1–2):273–283

    CAS  Google Scholar 

  12. Haasnoot W, Cazemier G, Koets M, van Amerongen A (2003) Single biosensor immunoassay for the detection of five aminoglycosides in reconstituted skimmed milk. Anal Chim Acta 488(1):53–60

    CAS  Google Scholar 

  13. Kloth K, Rye-Johnsen M, Didier A, Dietrich R, Maertlbauer E, Niessner R, Seidel M (2009) A regenerable immuno chip for the rapid determination of 13 different antibiotics in raw milk. Analyst 134(7):1433–1439

    CAS  Google Scholar 

Sensors for Mycotoxins and mycotoxin-producing funghi

  1. Ramos AJ, Labernia N, Marin S, Sanchis V, Magan N (1998) Effect of water activity and temperature on growth and ochratoxin production by three strains of Aspergillus ochraceus on a barley extract medium and on barley grains. Int J Food Microbiol 44(1,2):133–140

    CAS  Google Scholar 

  2. Chiavaro E, Dall’Asta C, Galaverna G, Biancardi A, Gambarelli E, Dossena A, Marchelli R (2001) New reversed-phase liquid chromatographic method to detect aflatoxins in food and feed with cyclodextrins as fluorescence enhancers added to the eluent. J Chromatogr A 937(1–2):31–40

    CAS  Google Scholar 

  3. Eaton DL, Groopman JD (1994) The toxicology of aflatoxins. Academic, New Jersey, p 521

    Google Scholar 

  4. European Commission (1998) Commission Regulation (98/53/EC). Official Journal of European Communities 1998L201/93

  5. Bhatnagar D, Lillehoj EV, Arora DK (1992) Handbook of applied mycology, vol 5. Mycotoxins in ecological svstems. Dekker, New York

    Google Scholar 

  6. Bakutis B, Baliukoniene V, Lugauskas A (2006) Factors predetermining the abundance of fungi and mycotoxins in grain from organic and conventional farms. Ekol 3:122–127

    Google Scholar 

  7. Diener UL, Cole RJ, Sanders TH, Payne GA, Lee LS, Klich MA (1987) Epidemiology of aflatoxin formation by Aspergillus flavus. Annu Rev Phytopathol 25:249–270

    CAS  Google Scholar 

  8. Akiyama H, Chen D, Miyahara M, Toyoda M, Saito Y (1996) Simple HPLC determination of aflatoxins B1, B2, G1, and G2 in nuts and corn. Shokuhin Eiseigaku Zasshi 37(4):195–201

    CAS  Google Scholar 

  9. Aldao MAJ, Carpinella MC, Corelli M, Herrero GG (1995) Competitive ELISA for quantifying small amounts of aflatoxin B1. Food Agric Immunol 7(4):307–314

    CAS  Google Scholar 

  10. Beardall JM, Miller JD (1994) Disease in humans with mycotoxins as possible causes. In: Miller JD, Trenholm HL (eds) Mycotoxins in grains. Compounds other than aflatoxin. Eagan, St. Paul

    Google Scholar 

  11. Krogh P (1987) Mycotoxins in food. Academic, London

    Google Scholar 

  12. International Agency for Research on Cancer (Lyon) (1993) Some naturally occurring substances. Food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monographs on the Evaluations of Carcinogenic Risks to Humans 56:489–521

    Google Scholar 

  13. Rheeder JP, Marasas WFO, Vismer HF (2002) Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol 68(5):2101–2105

    CAS  Google Scholar 

  14. Aenderung der Mykotoxinhoechstmengen-Verordnung (MHmV), Bundesgesetzblatt 2004 Teil I Nr. 5, S. 151

  15. Deoxynivalenol (DON) (2001) Publication no. 2001/23, Health Council of The Netherlands: The Hague

  16. Ammida NHS, Micheli L, Palleschi G (2004) Electrochemical immunosensor for determination of aflatoxin B1 in barley. Anal Chim Acta 520(1–2):159–164

    CAS  Google Scholar 

  17. Alarcon SH, Palleschi G, Compagnone D, Pascale M, Visconti A, Barna-Vetro I (2006) Monoclonal antibody based electrochemical immunosensor for the determination of ochratoxin A in wheat. Talanta 69(4):1031–1037

    CAS  Google Scholar 

  18. Prieto-Simon B, Campas M, Marty JL, Noguer T (2008) Novel highly-performing immuno-sensor-based strategy for ochratoxin A detection in wine samples. Biosens Bioelectron 23(7):995–1002

    CAS  Google Scholar 

  19. Piermarini S, Micheli L, Ammida NHS, Palleschi G, Moscone D (2007) Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. Biosens Bioelectron 22(7):1434–1440

    CAS  Google Scholar 

  20. Olsson J, Borjesson T, Lundstedt T, Schnurer J (2002) Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int J Food Microbiol 72(3):203–214

    CAS  Google Scholar 

  21. Cuccioloni M, Mozzicafreddo M, Barocci S, Ciuti F, Pecorelli I, Eleuteri AM, Spina M, Fioretti E, Angeletti M (2008) Biosensor-based screening method for the detection of aflatoxins B1-G1. Anal Chem 80(23):9250–9256

    CAS  Google Scholar 

  22. Tudos AJ, Lucas-van den Bos ER, Stigter ECA (2003) Rapid surface plasmon resonance-based inhibition assay of deoxynivalenol. J Agric Food Chem 51(20):5843–5848

    Google Scholar 

  23. van der Gaag B, Spath S, Dietrich H, Stigter E, Boonzaaijer G, van Osenbruggen T, Koopal K (2003) Biosensors and multiple mycotoxin analysis. Food Control 14(4):251–254

    Google Scholar 

  24. Sibanda L, De Saeger S, Van Peteghem C (1999) Development of a portable field immunoassay for the detection of aflatoxin M1 in milk. Int J Food Microbiol 48(3):203–209

    CAS  Google Scholar 

  25. Thompson VS, Maragos CM (1996) Fiber-optic immunosensor for the detection of Fumonisin B1. J Agric Food Chem 44(4):1041–1046

    CAS  Google Scholar 

  26. Maragos CM, Thompson VS (1999) Fiber-optic immunosensor for mycotoxins. Nat Toxins 7(6):371–376

    CAS  Google Scholar 

  27. Ngundi MM, Shriver-Lake LC, Moore MH, Lassman ME, Ligler FS, Taitt CR (2005) Array biosensor for detection of Ochratoxin A in cereals and beverages. Anal Chem 77(1):148–154

    CAS  Google Scholar 

  28. Ngundi MM, Qadri SA, Wallace EV, Moore MH, Lassman ME, Shriver-Lake LC, Ligler FS, Taitt CR (2006) Detection of deoxynivalenol in foods and indoor air using an array biosensor. Environ Sci Technol 40(7):2352–2356

    CAS  Google Scholar 

  29. Caputo D, de Cesare G, Fanelli C, Nascetti A, Ricelli A, Scipinotti R (2007) Innovative detection system of ochratoxin A by thin film photodiodes. Sensors 7(7):1317–1322

    CAS  Google Scholar 

  30. Carter RM, Jacobs MB, Lubrano GJ, Guilbault GG (1997) Rapid detection of aflatoxin B1 with immunochemical optrodes. Anal Lett 30(8):1465–1482

    CAS  Google Scholar 

  31. Badea M, Micheli L, Messia MC, Candigliota T, Marconi E, Mottram T, Velasco-Garcia M, Moscone D, Palleschi G (2004) Aflatoxin M1 determination in raw milk using a flow-injection immunoassay system. Anal Chim Acta 520(1–2):141–148

    CAS  Google Scholar 

  32. Adanyi N, Levkovets IA, Rodriguez-Gil S, Ronald A, Varadi M, Szendro I (2007) Development of immunosensor based on OWLS technique for determining Aflatoxin B1 and Ochratoxin A. Biosens Bioelectron 22(6):797–802

    CAS  Google Scholar 

  33. Cervino C, Sauceda JC, Niessner R, Knopp D (2008) Mycotoxin analysis by automated flow-through immunoassay with chemoluminescence readout. Luminescence 23:206–207

    Google Scholar 

Sensors for plant toxins

  1. Olsnes S, Refsnes K, Pihl A (1974) Mechanism of action of the toxic lectins abrin and ricin. Nature 249(5458):627–631

    CAS  Google Scholar 

  2. Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28S ribosomal RNA caused by the toxins. J Biol Chem 262(12):5908–5912

    CAS  Google Scholar 

  3. Frankel AE, Burbage C, Fu T, Tagge E, Chandler J, Willingham MC (1996) Ricin toxin contains at least three galactose-binding sites located in B chain subdomains 1α, 1β, and 2γ. Biochemistry US 35(47):14749–14756

    CAS  Google Scholar 

  4. Lord JM, Roberts LM, Robertus JD (1994) Ricin: structure, mode of action, and some current applications. FASEB J 8(2):201–208

    CAS  Google Scholar 

  5. Franz DR, Jaax NK (1997) In: Sidell FR, Takafuji ET, Franz DR (eds) Medical aspects of chemical and biological warfare. Walter Reed Army Medical Center, Washington, pp 631–642

    Google Scholar 

  6. Gluck A, Endo Y, Wool IG (1992) Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants. J Mol Biol 226(2):411–424

    CAS  Google Scholar 

  7. Robertus JD (1988) Toxin structure. Canc Treat 37:11–24

    CAS  Google Scholar 

  8. Robertus JD (1991) The structure and action of ricin, a cytotoxic Nglycosidase. Semin Cell Biol 2:23–30

    CAS  Google Scholar 

  9. Lord JM, Wales R, Pitcher C, Roberts LM (1992) Cell surface and intracellular functions for galactose binding in ricin cytotoxicity. Biochem Soc T 20(4):734–738

    CAS  Google Scholar 

  10. Eiklid K, Olsnes S, Pihl A (1980) Entry of lethal doses of abrin, ricin and modeccin into the cytosol of HeLa cells. Exp Cell Res 126(2):321–326

    CAS  Google Scholar 

  11. Shankar K, Zeng K, Ruan C, Grimes CA (2005) Quantification of ricin concentrations in aqueous media. Sens Actuators B Chem 107(2):640–648

    Google Scholar 

  12. Suresh S, Kumar O, Kolhe P, Rao V, Kameswara SK (2007) Detection of ricin in water samples using disposable screen-printed electrodes. Def Sci J 57(6):839–844

    CAS  Google Scholar 

Sensors for marine toxins

  1. Nakayama T, Terakawa S (1982) A rapid purification procedure for tetrodotoxin derivatives by high-performance liquid chromatography. Anal Biochem 126(1):153–155

    CAS  Google Scholar 

  2. Onoue Y, Noguchi T, Nagashima Y, Hashimoto K, Kanoh S, Ito M, Tsukada K (1983) Separation of tetrodotoxin and paralytic shellfish poisons by high-performance liquid chromatography with a fluorometric detection using o-phthalaldehyde. J Chromatogr 257(2):373–379

    CAS  Google Scholar 

  3. Tokuda H, Unemoto T (1985) The sodium-motive respiratory chain of marine bacteria. Microbiol Sci 2(3):69–71

    Google Scholar 

  4. Nagashima Y, Maruyama J, Noguchi T, Hashimoto K (1987) Analysis of paralytic shellfish poison and tetrodotoxin by ion-pair high-performance liquid chromatography. Nippon Suisan Gakkaishi 53(5):819–823

    CAS  Google Scholar 

  5. Clark RF, Williams SR, Nordt SP, Manoguerra ASA (1999) A review of selected seafood poisonings. Undersea Hyperb Med 26(3):175–184

    CAS  Google Scholar 

  6. Pshenichkin SP, Wise BC (1995) Okadaic acid increases nerve growth factor secretion, mRNA stability, and gene transcription in primary cultures of cortical astrocytes. J Biol Chem 270(11):5994–5999

    CAS  Google Scholar 

  7. Park DL (1995) Surveillance programs for managing risks from naturally occurring toxicants. Food Addit Contam 12(3):361–371

    CAS  Google Scholar 

  8. http://www.glf.dfo-mpo.gc.ca/os/aes-sae/dapr-radp/index-e.php

  9. Iverson F, Truelove J (1994) Toxicology and seafood toxins: domoic acid. Nat Toxins 2(5):334–339

    CAS  Google Scholar 

  10. Micheli L, Radoi A, Guarrina R, Massaud R, Bala C, Moscone D, Palleschi G (2004) Disposable immunosensor for the determination of domoic acid in shellfish. Biosens Bioelectron 20:190–196

    CAS  Google Scholar 

  11. Marquette CA, Coulet PR, Blum LJ (1999) Semi-automated membrane based chemiluminescent immunosensor for flow injection analysis of okadaic acid in mussels. Anal Chim Acta 398(2–3):173–182

    CAS  Google Scholar 

  12. Cheun B, Endo H, Hayashi T, Nagashima Y, Watanabe E (1996) Development of an ultra high sensitive tissue biosensor for determination of swellfish poisoning, tetrodotoxin. Biosens Bioelectron 11(12):1185–1191

    CAS  Google Scholar 

  13. Cheun BS, Loughran M, Hayashi T, Nagashima Y, Watanabe E (1998) Use of a channel biosensor for the assay of paralytic shellfish toxins. Toxicon 36(10):1371–1381

    CAS  Google Scholar 

Sensors for mainly interesting food-contaminating bacteria

  1. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5(5):607–625

    CAS  Google Scholar 

  2. Mao Y, Zhu C, Boedeker EC (2003) Foodborne enteric infections. Curr Opin Gastroenterol 19(1):11–22

    CAS  Google Scholar 

  3. Coker AO, Isokpehi RD, Thomas BN, Amisu KD, Obi CL (2002) Human campylobacteriosis in developing countries. Emerg Infect Dis 8(3):237–244

    Google Scholar 

  4. Che Y, Li Y, Slavik M (2001) Detection of Campylobacter jejuni in poultry samples using an enzyme-linked immunoassay coupled with an enzyme electrode. Biosens Bioelectron 16(9–12):791–797

    CAS  Google Scholar 

  5. Smith JL, Fratamico P (2005) Diarrhea-inducing Escherichia coli. In: Fratamico P, Bhunia AK, Smith JL (eds) Foodborne pathogens: microbiology and molecular biology. Academic, Norfolk, pp 357–382

    Google Scholar 

  6. CDC (2006) Foodborne illness. http://www.cdc.gov/ncidod/dbmd/diseaseinfo/foodborneinfections g.htm

  7. CDC (2006) Escherichia coli O157:H7. http://www.cdc.gov/ncidod/dbmd/diseaseinfo/escherichiacoli g.htm

  8. Tu SI, Uknalis J, Gore M, Irwin P, Feder I (2003) Factors affecting the bacterial capture efficiency ofimmunobeads: a comparison between beads with different size and density. J Rapid Methods Autom Microbiol 11(1):35–46

    Google Scholar 

  9. Besser RE, Lett SM, Weber JT, Doyle MP, Barrett TJ, Wells JG, Griffin PM (1993) An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157:H7 in fresh-pressed apple cider. JAMA J Am Med Assoc 269(17):2217–2220

    CAS  Google Scholar 

  10. American Association for Food Hygiene Veterinarians (1996) New-O-Gram 20:16

    Google Scholar 

  11. Greenberg AE, Trussel RR, Clesceri LS, Franson MAH (1992) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  12. Murray EGD, Webb RA, Swann HBR (1926) A disease of rabbits characterized by a large mononuclear leucocytosis caused by a hitherto undescribed bacillus Bacterium monocytogenes (n. sp.). J Pathol Bacteriol 29:407–439

    Google Scholar 

  13. Schlech WF 3rd (2000) Foodborne listeriosis. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 31(3):770–775

  14. Donnelly CW (2001) Listeria monocytogenes: a continuing challenge. Nutr Rev 59(6):183–194

    Article  CAS  Google Scholar 

  15. Jones D, Seeliger H (1992) The genus Listeria. In: Balows CA, Truper HG, Dworkin M, Harder W, Schleur KH (eds) The Prokaryotes, 2nd edn. Springer, Heidelberg, pp 1595–1616

    Google Scholar 

  16. Chasseignaux E, Gerault P, Toquin MT, Salvat G, Colin P, Ermel G (2002) Ecology of Listeria monocytogenes in the environment of raw poultry meat and raw pork meat processing plants. FEMS Microbiol Lett 210(2):271–275

    CAS  Google Scholar 

  17. Doganay M (2003) Listeriosis: clinical presentation. FEMS Immunol Med Microbiol 35(3):173–175

    CAS  Google Scholar 

  18. Ryan KJ, Ray CG (2003) Sherris medical microbiology, 4th edn. McGraw Hill, New York

    Google Scholar 

  19. Hale TL, Keusch GT (1996) Shigella. In: Baron S et al (eds) Baron’s Medical Microbiology, 4th edn. University of Texas Medical Branch, Galveston

    Google Scholar 

  20. Kothary MH, Delston RB, Curtis SK, McCardell BA, Tall BD (2001) Purification and characterization of a vulnificolysin-like cytolysin produced by Vibrio tubiashii. Appl Environ Microbiol 67(8):3707–3711

    CAS  Google Scholar 

  21. Herold S, Karch H, Schmidt H (2004) Shiga toxin-encoding bacteriophages–genomes in motion. Int J Med Microbiol 294(2–3):115–121

    CAS  Google Scholar 

  22. CDC (2005) Outbreaks of Salmonella infections associated with eating aroma tomatoes—United States and Canada, 2004. MMWR 54(13):325–328

    Google Scholar 

  23. CDC (2006) Multistate outbreak of Salmonella typhimurium infections associated with eating ground beef—United States, 2004. MMWR 55(7):180–182

    Google Scholar 

  24. http://www.igen.com

  25. Yu H, Bruno JG (1996) Immunomagnetic–electrochemiluminescent detection of Escherichia coli O157 and Salmonella typhimurium in foods and environmental water samples. Appl Environ Microbiol 62(2):587–592

    CAS  Google Scholar 

  26. Gehring AG, Albin DM, Irwin PL, Reed SA, Tu SI (2006) Comparison of enzyme-linked immunomagnetic chemiluminescence with U.S. Food and Drug Administration’s Bacteriological Analytical Manual method for the detection of Escherichia coli O157:H7. J Microbiol Methods 67(3):527–533

    CAS  Google Scholar 

  27. Geng T, Morgan MT, Bhunia AK (2004) Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Appl Environ Microbiol 70(10):6138–6146

    CAS  Google Scholar 

  28. Nanduri V, Kim G, Morgan MT, Ess D, Hahm BK, Kothapalli A, Valadez A, Geng T, Bhunia AK (2006) Antibody immobilization on waveguides using a flow-through system shows improved Listeria monocytogenes detection in an automated fiber-optic biosensor: RAPTOR. Sensors 6(8):808–822

    CAS  Google Scholar 

  29. Geng T, Uknalis J, Tu SI, Bhunia AK (2006) Fiber-optic biosensor employing Alexa-Fluor conjugated antibody for detection of Escherichia coli O157:H7 from ground beef in four hours. Sensors 6(8):796–807

    CAS  Google Scholar 

  30. http://www.resrchintl.com/pdf/analyte_specs_091503.pdf

  31. Campbell GA, Uknalis J, Tu SI, Mutharasan R (2007) Detect of Escherichia coli O157:H7 in ground beef samples using piezoelectric excited millimeter-sized cantilever (PEMC) sensors. Biosens Bioelectron 22(7):1296–1302

    CAS  Google Scholar 

  32. Minunni M, Mascini M, Carter RM, Jacobs MB, Lubrano GJ, Guilbault GG (1996) A quartz crystal microbalance displacement assay for Listeria monocytogenes. Anal Chim Acta 325(3):169–174

    CAS  Google Scholar 

  33. Crowley EL, O’Sullivan CK, Guilbault GG (1999) Increasing the sensitivity of Listeria monocytogenes assays: evaluation using ELISA and amperometric detection. Analyst 124(3):295–299

    CAS  Google Scholar 

  34. http://www.plasmonic.de

  35. Mazumdar SD, Hartmann M, Kaempfer P, Keusgen M (2007) Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR). Biosens Bioelectron 22(9–10):2040–2046

    CAS  Google Scholar 

  36. www.ti.com

  37. Wei D, Oyarzabal OA, Huang TS, Balasubramanian S, Sista S, Simonian AL (2007) Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. J Microbial Meth 69(1):78–85

    CAS  Google Scholar 

  38. Son JR, Kim G, Kothapalli A, Morgan MT, Ess D (2007) Detection of Salmonella enteritidis using a miniature optical surface plasmon resonance biosensor. J Phys Conf Ser 61:1086–1090

    Google Scholar 

  39. Leonard P, Hearty S, Quinn J, O’Kennedy R (2004) A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron 19(10):1331–1335

    CAS  Google Scholar 

  40. Shriver-Lake LC, Turner S, Taitt CR (2007) Rapid detection of Escherichia coli O157:H7 spiked into food matrices. Anal Chim Acta 584(1):66–71

    CAS  Google Scholar 

  41. Taitt CR, Shubin YS, Angel R, Ligler FS (2004) Detection of Salmonella enterica serovar typhimurium by using a rapid, array-based immunosensor. Appl Environ Microbiol 70(1):152–158

    CAS  Google Scholar 

Multitoxin sensors

  1. Rowe CA, Tender LM, Feldstein MJ, Golden JP, Scruggs SB, MacCraith BD, Cras JJ, Ligler FS (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal Chem 71(17):3846–3852

    CAS  Google Scholar 

  2. Sapsford KE, Taitt CR, Loo N, Ligler FS (2005) Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl Environ Microbiol 71(9):5590–5592

    CAS  Google Scholar 

  3. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377(3):469–477

    CAS  Google Scholar 

  4. Sapsford KE, Rasooly A, Taitt CR, Ligler FS (2004) Detection of Campylobacter and Shigella species in food samples using an array biosensor. Anal Chem 76(2):433–440

    CAS  Google Scholar 

  5. Sapsford KE, Ngundi MM, Moore MH, Lassman ME, Shriver-Lake LC, Taitt CR, Ligler FS (2006) Rapid detection of foodborne contaminants using an array biosensor. Sens Actuators B Chem 113(2):599–607

    Google Scholar 

  6. Taitt CR, Golden JP, Shubin YS, Shriver-Lake LC, Sapsford KE, Rasooly A, Ligler FS (2004) A portable array biosensor for detecting multiple analytes in complex samples. Microb Ecol 47(2):175–185

    CAS  Google Scholar 

  7. Ngundi MM, Taitt CR (2006) An array biosensor for detection of bacterial and toxic contaminants of foods. In: O’Connor L (ed) Methods in molecular biology: diagnostic bacteriology protocols (345), 2nd edn. Humana, Towota, pp 53–68

    Google Scholar 

  8. Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA, Barone S, Myatt CJ (2007) The array biosensor: portable, automated systems. Anal Sci 23(1):5–10

    Google Scholar 

  9. http://www.hansontechnologies.com

  10. http://www.contech.com

  11. Chemburu S, Wilkins E, Abdel-Hamid I (2005) Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles. Biosens Bioelectron 21(3):491–499

    CAS  Google Scholar 

  12. Taylor AD, Ladd J, Yu Q, Chen S, Homola J, Jiang S (2006) Quantitative and simultaneous detection of 4 foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron 22(5):752–758

    CAS  Google Scholar 

  13. Rider TH, Petrovick MS, Nargi FE, Harper JD, Schwoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J, Hollis MA (2003) A B cell-based sensor for rapid identification of pathogens. Science 301(5630):213–215

    CAS  Google Scholar 

Conclusion

  1. Boecker D, Zybin A, Niemax K, Grunwald C, Mirsky V (2008) Noise reduction by multiple referencing in surface plasmon resonance imaging. Rev Sci Instrum 79:023110

    Google Scholar 

Download references

Acknowledgments

The authors thank the European Union for financial support by the Integrated Project BIOTRACER under the 6th RTD Framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schäferling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moises, S.S., Schäferling, M. Toxin immunosensors and sensor arrays for food quality control. Bioanal Rev 1, 73–104 (2009). https://doi.org/10.1007/s12566-009-0006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12566-009-0006-x

Keywords

Navigation