Skip to main content
Log in

Effect of tip geometry of atomic force microscope on mechanical responses of bovine articular cartilage and agarose gel

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the effect of different Atomic Force Microscope (AFM) tip geometries (sharp-conical and spherical tips) on the microscale Young’s modulus of bovine articular cartilage and agarose gel that is calculated by the method of the average point-wise modulus. The measurements of the microscale Young’s moduli of 3% agarose gel under a conical AFM tip (20.9±4.9 kPa) and under a spherical AFM tip (17.5±3.0 kPa), averaged over an indentation depth of 600 nm, were comparable. However, the microscale Young’s moduli of articular cartilage, as measured with a conical AFM tip (116.9±62.9 kPa), were significantly higher than the corresponding values under a spherical AFM tip (30.9±14.3 kPa). The results of the current study suggest that the AFM tip geometry affects the microscale measurements of the mechanical properties on the surfaces of biological materials. The findings of the study can help to elucidate more accurately the microscale mechanical properties on the surface layers of diverse biological materials including tissue-engineered cartilages with different material characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhushan, B., “Handbook of Micro/Nanotribology,” CRC Press, p. 628, 1995.

  2. Bhushan, B., “Micro/nanotechnology using atomic force microscopy/friction force microscopy: State of the art,” Proc. of the Institution of Mechanical Engineers, Vol. 212, pp. 1–18, 1995.

    Article  MathSciNet  Google Scholar 

  3. Kumar, P., Oka, M., Toguchida, J., Kobayashi, M., Uchida, E., Nakamura, T. and Tanaka, K., “Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints,” J. of Anatomy, Vol. 199, No. 3, pp. 241–250, 2001.

    Article  Google Scholar 

  4. Kim, H. J. and Kim, D. E., “Nano-scale friction: A review,” Int. J. Pre. Eng. Manuf., Vol. 10, No. 2, pp. 141–151, 2009.

    Article  Google Scholar 

  5. Koinkar, V. N. and Bhushan B., “Microtribological properties of hard amorphous carbon protective coatings for thin-film magnetic disks and heads,” Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology, Vol. 211, No. 4, pp. 365–372, 1997.

    Article  Google Scholar 

  6. Kim, S. H., Opdahl, A., Marmo, C. and Somorjai, G. A., “Afm and sfg studies of phema-based hydrogel contact lens surfaces in saline solution: Adhesion, friction, and the presence of non-crosslinked polymer chains at the surface,” Biomaterials, Vol. 23, No. 7, pp. 1657–1666, 2002.

    Article  Google Scholar 

  7. Lee, C. G., Hwang, Y. J., Choi, Y. M., Lee, J. K., Choi, C. and Oh, J. M., “A study on the tribological characteristics of graphite nano lubricants,” Int. J. Prec. Eng. Manuf., Vol. 10, No. 1, pp. 85–90, 2009.

    Article  Google Scholar 

  8. Kim, J. H., Lee, H. K., Choi, B. I., Kang, J. Y. and Oh, C. S., “Mechanical property measurement in nano imprint process,” J. of KSPE, Vol. 21, No. 6, pp. 7–14, 2004.

    Google Scholar 

  9. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B. and Chadwick, R. S., “Determination of elastic moduli of thin layers of soft material using the atomic force microscope,” Biophysical Journal, Vol. 82, No. 5, pp. 2798–2810, 2002.

    Article  Google Scholar 

  10. A-Hassan, E., Heinz, W. F., Antonik, M. D., D’Costa, N. P., Nageswaran, S., Schoenenberger, C. A. and Hoh, J. H., “Relative microelastic mapping of living cells by atomic force microscopy,” Biophysical Journal, Vol. 74, No. 3, pp. 1564–1578, 1998.

    Article  Google Scholar 

  11. Costa, K. D. and Yin, F. C., “Analysis of indentation: Implications for measuring mechanical properties with atomic force microscopy,” J. Biomech. Eng., Vol. 121, No. 5, pp. 462–471, 1999.

    Article  Google Scholar 

  12. Heinz, W. F. and Hoh, J. H., “Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope,” Trends in Biotechnology, Vol. 17, No. 4, pp. 143–150, 1999.

    Article  Google Scholar 

  13. Parbhu, A. N., Bryson, W. G. and Lal, R., “Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: Correlative nano-indentation and elasticity measurement with an afm,” Biochemistry, Vol. 38, No. 36, pp. 11755–11761, 1999.

    Article  Google Scholar 

  14. Mathur, A. B., Truskey, G. A. and Reichert, W. M., “Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells,” Biophysical Journal, Vol. 78, No. 4, pp. 1725–1735, 2000.

    Article  Google Scholar 

  15. Mathur, A. B., Collinsworth, A. M., Reichert, W. M., Kraus, W. E. and Truskey, G. A., “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,” Journal of Biomechanics, Vol. 34, No. 12, pp. 1545–1553, 2001.

    Article  Google Scholar 

  16. Collinsworth, A. M., Zhang, S., Kraus, W. E. and Truskey, G. A., “Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation,” American Journal of Physiology-Cell Physiology, Vol. 283, No. 4, pp. C1219–C1227, 2002.

    Google Scholar 

  17. Radmacher, M., “Measuring the elastic properties of living cells by the atomic force microscope. In: Atomic force microscopy in cell biology,” Academic Press, pp. 67–90, 2002.

  18. Braet, F., Rotsch, C., Wisse, E. and Radmacher, M., “Comparison of fixed and living liver endothelial cells by atomic force microscopy,” Applied Physics A: Materials Science & Processing, Vol. 66, No. 1, pp. S575–S578, 1998.

    Google Scholar 

  19. Hengsberger, S., Kulik, A. and Zysset, P., “A combined atomic force microscopy and nanoindentation technique to investigate the elastic properties of bone structural units,” European Cells and Materials, Vol. 1, pp. 12–17, 2001.

    Google Scholar 

  20. Kinney, J. H., Habelitz, S., Marshall, S. J. and Marshall, G. W., “The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin,” Journal of dental research, Vol. 82, No. 12, pp. 957–961, 2003.

    Article  Google Scholar 

  21. Murakoshi, M., Yoshida, N., Iida, K., Kumano, S., Kobayashi, T. and Wada, H., “Local mechanical properties of mouse outer hair cells: Atomic force microscopic study,” Auris Nasus Larynx, Vol. 33, No. 2, pp. 149–157, 2006.

    Article  Google Scholar 

  22. Lieber, S. C., Aubry, N., Pain, J., Diaz, G., Kim, S. J. and Vatner, S. F., “Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation,” American Journal of Physiology. Heart and Circulatory Physiology, Vol. 287, No. 2, pp. 645–651, 2004.

    Article  Google Scholar 

  23. Costa, K. D., “Imaging and probing cell mechanical properties with the atomic force microscope,” Methods in Molecular Biology, Vol. 319, pp. 331–361, 2006.

    Article  Google Scholar 

  24. Guo, S., Hong, L., Akhremitchev, B. B. and Simon, J. D., “Surface elastic properties of human retinal pigment epithelium melanosomes,” Photochemistry Photobiology, Vol. 84, No. 3, pp. 671–678, 2008.

    Article  Google Scholar 

  25. Abu-Lail, N. I. and Camesano, T. A., “The effect of solvent polarity on the molecular surface properties and adhesion of escherichia coli,” Colloids and Surf. B: Biointerfaces, Vol. 51, No. 1, pp. 62–70, 2006.

    Article  Google Scholar 

  26. Patel, R. V. and Mao, J. J., “Microstructural and elastic properties of the extracellular matrices of the superficial zone of neonatal articular cartilage by atomic force microscopy,” Frontiers in Bioscience, Vol. 8, No. pp. 18–25, 2003.

    Article  Google Scholar 

  27. Tomkoria, S., Patel, R. V. and Mao, J. J., “Heterogeneous nanomechanical properties of superficial and zonal regions of articular cartilage of the rabbit proximal radius condyle by atomic force microscopy,” Medical Engineering and Physics, Vol. 26, No. 10, pp. 815–822, 2004.

    Article  Google Scholar 

  28. Simha, N. K., Jin, H., Hall, M. L., Chiravarambath, S. and Lewis, J. L., “Effect of indenter size on elastic modulus of cartilage measured by indentation,” Journal of Biomechanical Engineering-Transactions of the ASME, Vol. 129, No. 5, pp. 767–775, 2007.

    Article  Google Scholar 

  29. Johnson, K. L., “Contact mechanics,” Cambridge University Press, p. 452, 1985.

  30. Stolz, M., Raiteri, R., Daniels, A. U., VanLandingham, M. R., Baschong, W. and Aebi, U., “Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy,” Biophysical Journal, Vol. 86, No. 5, pp. 3269–3283, 2004.

    Article  Google Scholar 

  31. Park, S., Costa, K. D., Ateshian, G. A. and Hong, K. S., “Mechanical properties of bovine articular cartilage under microscale indentation loading from atomic force microscopy,” Proc. IMechE Part H: J. Engineering in Medicine, Vol. 223, No. 3, pp. 339–347, 2009.

    Article  Google Scholar 

  32. Armstrong, C. G., Lai, W. M. and Mow, V. C., “An analysis of the unconfined compression of articular cartilage,” Journal of Biomechanical Engineering, Vol. 106, No. 2, pp. 165–173, 1984.

    Article  Google Scholar 

  33. Ateshian, G. A., Lai, W. M., Zhu, W. B. and Mow, V. C., “An asymptotic solution for the contact of two biphasic cartilage layers,” Journal of Biomechanics, Vol. 27, No. 11, pp. 1347–1360, 1994.

    Article  Google Scholar 

  34. Ateshian, G. A., Wang, H. Q. and Lai, W. M., “The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage,” Journal of Tribology-Transactions of the ASME, Vol. 120, No. 2, pp. 241–248, 1998.

    Article  Google Scholar 

  35. Huang, C. Y., Mow, V. C. and Ateshian, G. A., “The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage,” Journal of Biomechanical Engineering, Vol. 123, No. 5, pp. 410–417, 2001.

    Article  Google Scholar 

  36. Huang, C. Y., Soltz, M. A., Kopacz, M., Mow, V. C. and Ateshian, G. A., “Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage,” Journal of Biomechanical Engineering, Vol. 125, No. 1, pp. 84–93, 2003.

    Article  Google Scholar 

  37. Soltz, M. A. and Ateshian, G. A., “A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage,” Journal of Biomechanical Engineering, Vol. 122, No. 6, pp. 576–586, 2000.

    Article  Google Scholar 

  38. Soltz, M. A. and Ateshian, G. A., “Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression,” Journal of Biomechanics, Vol. 31, No. 10, pp. 927–934, 1998.

    Article  Google Scholar 

  39. Park, S., Hung, C. T. and Ateshian, G. A., “Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels,” Osteoarthritis Cartilage, Vol. 12, No. 1, pp. 65–73, 2004.

    Article  MATH  Google Scholar 

  40. Park, S. and Ateshian, G. A., “Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response,” Journal of Biomechanical Engineering, Vol. 128, No. 4, pp. 623–630, 2006.

    Article  Google Scholar 

  41. Park, S., Costa, K. D. and Ateshian, G. A., “Microscale frictional response of bovine articular cartilage from atomic force microscopy,” Journal of Biomechanics, Vol. 37, No. 11, pp. 1679–1687, 2004.

    Article  Google Scholar 

  42. Wang, C. C., Deng, J. M., Ateshian, G. A. and Hung, C. T., “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” Journal of Biomechanical Engineering, Vol. 124, No. 5, pp. 557–567, 2002.

    Article  Google Scholar 

  43. Schinagl, R. M., Gurskis, D., Chen, A. C. and Sah, R. L., “Depth-dependent confined compression modulus of full-thickness bovine articular cartilage,” Journal of Orthopaedic Research, Vol. 15, No. 4, pp. 499–506, 1997.

    Article  Google Scholar 

  44. Klein, T. J., Chaudhry, M., Bae, W. C. and Sah, R. L., “Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage,” Journal of Biomechanics, Vol. 40, No. 1, pp. 182–190, 2007.

    Article  Google Scholar 

  45. Krishnan, R., Park, S., Eckstein, F. and Ateshian, G. A., “Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress,” Journal of Biomechanical Engineering, Vol. 125, No. 5, pp. 569–577, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seonghun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Duong, CT., Lee, JH. et al. Effect of tip geometry of atomic force microscope on mechanical responses of bovine articular cartilage and agarose gel. Int. J. Precis. Eng. Manuf. 11, 129–136 (2010). https://doi.org/10.1007/s12541-010-0016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-010-0016-1

Keywords

Navigation